Mathematik 1

1. Übungsblatt - Gruppe A

Lineare Algebra

- 1. Gegeben sind die Vektoren $\vec{a} = (2, -1, 0)^t$ und $\vec{b} = (5, 2, -1)^t$. Bestimmen Sie $\vec{a} + \vec{b}$ sowie $3\vec{a} - 2\vec{b}$.
- 2. Zeigen Sie, daß die Menge $U_0 = \{(x,0) \mid x \in \mathbb{R}\}$ einen Unterraum des Vektorraumes \mathbb{R}^2 darstellt. Gilt dies auch für die Menge $U_1 = \{(y,1) \mid y \in \mathbb{R}\}$?
- 3. Stellen Sie den Vektor $\vec{x} = (4, -1, -1)^t$ als Linearkombination der Vektoren $\vec{x}_1 = (2, 0, 1)^t$, $\vec{x}_2 = (1, -1, 0)^t$ und $\vec{x}_3 = (0, 1, 3)^t$ dar.
- 4. Gegeben sind die Vektoren $\vec{u} = (1, 1, -1)^t$ und $\vec{v} = (0, 3, 3)^t$. Bestimmen Sie im Vektor $\vec{x} = (1, 2, a)^t$ den Parameter a derart, daß gilt $\vec{x} \in \operatorname{Span}\{\vec{u}, \vec{v}\}$.
- 5. Im \mathbb{R}^4 sind die drei Vektoren $\vec{v}_1 = (1, 0, 4, 0)^t$, $\vec{v}_2 = (-2, 0, 1, 0)^t$, $\vec{v}_3 = (3, 0, 0, 0)^t$ gegeben.
 - (a) Zeigen Sie, daß die Familie $\mathcal{F} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ linear abhängig ist. ①
 - (b) Bestimmen Sie eine möglichst große Anzahl von Vektoren aus \mathcal{F} , die eine linear unabhängige Familie bilden.
- 6. Die Polynome $y_1 = x + 2$, $y_2 = 2x^2 + 5x$ und $y_3 = x^2 + 2x 1$ sind Elemente des Vektorraumes der Polynome 2. Grades.
 - (a) Bestimmen Sie eine Basis und die Dimension jenes Unterraumes, der durch die gegebenen Polynome aufgespannt wird.
 - (b) Liegt das Polynom $z = 5 x^2$ in diesem Unterraum? Stellen Sie es ggf. durch die Basis aus (a) dar.
- 7. Man bestimme einen Vektor \vec{u} in Richtung $\vec{r}=(1,4,-3,1)^t$ so, daß $\|\vec{u}\|=1$ gilt.
- 8. Die drei Punkte A=(4,9,-3), B=(1,3,3) und C=(-2,1,-3) seien die Ecken des Dreiecks $\triangle(A,B,C)$. Berechnen Sie die Seitenlängen dieses Dreiecks sowie den Winkel des Dreiecks im Eckpunkt A. (Hinweis: Betrachten Sie die Seiten des Dreiecks als Vektoren). ③

- 9. Sei $\vec{x} = (1, -4, 3, 3)^t$, $\vec{y} = (3, 0, -1, a)^t$ und $\vec{z} = (3, 0, 1, b)^t$. Bestimmen Sie a und $b \in \mathbb{R}$ so, daß $\vec{y} \perp \vec{x}$ und $\vec{z} \perp \vec{x}$ gilt. Gilt damit auch $\vec{z} \perp \vec{y}$?
- 10. Gesucht ist eine Darstellung des Vektors $\vec{a} = (4, -1)^t$ als Summe von zwei Vektoren \vec{v}_1 und \vec{v}_2 , so daß \vec{v}_1 in die Richtung $\vec{r} = (1, -2)^t$ weist und \vec{v}_2 dazu orthogonal steht.
- 11. Man ermittle aus folgenden Vektoren eine Orthonormalbasis des aufgespannten Vektorraumes (Hinweis: Gram-Schmidt-Verfahren):

$$\vec{x}_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \vec{x}_2 = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}, \vec{x}_3 = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}$$

(6)

(2)

- 12. Die beiden Vektoren $\vec{x}_1 = (\frac{1}{3}, \frac{2}{3}, 0, -\frac{2}{3})^t$ und $\vec{x}_2 = (\frac{8}{9}, 0, -\frac{1}{9}, \frac{4}{9})^t$ bilden eine Orthonormalbasis eines Unterraumes des \mathbb{R}^4 . Ermitteln Sie die Projektion \vec{p} des Vektors $\vec{y} = (3, 3, -1, 2)^t$ auf diesen Unterraum.
- 13. Stellen Sie die Ebene

$$\left\{ \vec{x} \in \mathbb{R}^3 \mid \vec{x} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\}$$

in Gleichungsform dar.

- 14. Bestimmen Sie eine Parameterform der Geraden $\left\{\vec{x} \in \mathbb{R}^3 \mid 2x_1 + 3x_2 x_3 = 4, \ x_1 x_2 + 2x_3 = -1\right\}$
- 15. Gegeben ist die Ebene $\{\vec{x} \in \mathbb{R}^3 \mid 4x_1 x_2 2x_3 = 8\}.$
 - (a) Bestimmen Sie zu dieser Ebene einen Normalvektor \vec{n} .
 - (b) Stellen Sie die Gerade in Richtung \vec{n} durch den Ursprung mittels geeigneter Gleichungen dar. ②
- 16. Mit $\vec{a} = (4, -1, 2)^t$, $\vec{b} = (0, 3, 3)^t$ und $\vec{c} = (-1, 2, 1)^t$ berechne man

(a)
$$\|\vec{a} \times \vec{b}\|$$
 ①

(b)
$$\langle \vec{a}, \vec{c} \times \vec{b} \rangle$$