Berechnung der Eigenwerte und Eigenvektoren zur Matrix

$$A = \left(\begin{array}{ccc} a & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 4 & -1 \end{array}\right)$$

1. Als charakteristisches Polynom ergibt sich $P(\lambda) = (a - \lambda)(\lambda - 3)(\lambda + 2)$ und damit die Eigenwerte $\lambda_1 = a$, $\lambda_2 = 3$ und $\lambda_3 = -2$.

Wenn a=3 oder a=-2 gilt, ergeben sich zwei Spezialfälle mit Eigenwerten von algebraischer Vielfachheit 2. Diese Probleme können wie gewohnt gelöst werden, indem man a in der Matrix ersetzt.

Sei also im weiteren $a \in \mathbb{R} \setminus \{-2, 3\}$.

2. Eigenvektor \vec{x} zu $\lambda = a$:

$$\begin{pmatrix} 0 & 2 & 0 \\ 0 & 2-a & 1 \\ 0 & 4 & -1-a \end{pmatrix} \cdot \vec{x} = \vec{0} \quad \rightsquigarrow \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Es muß $\underline{x_2=x_3=0}$ gelten, die erste Komponente ist frei wählbar. Wir setzen $\underline{x_1=1}$.

3. Eigenvektor \vec{y} zu $\lambda = 3$:

$$\begin{pmatrix} a-3 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 4 & -4 \end{pmatrix} \sim \begin{pmatrix} a-3 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Wahl von $\underline{y_3 = 1}$ liefert $\underline{y_2 = 1}$ und $\underline{y_1 = \frac{-2}{a-3}}$ (man beachte, daß $a \neq 3$ bereits vorausgesetzt wurde).

4. Eigenvektor \vec{z} zu $\lambda = -2$:

$$\begin{pmatrix} a+2 & 2 & 0 \\ 0 & 4 & 1 \\ 0 & 4 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} a+2 & 2 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Wahl von $\underline{z_3 = 4}$ ergibt $\underline{z_2 = -1}$. Die erste Gleichung liefert $\underline{z_1 = \frac{2}{a+2}}$ (wiederum war $a \neq -2$ bereits vorausgesetzt).

5. Die drei Eigenvektoren in Abhängigkeit von a ergeben sich also zu

$$\vec{x} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
 , $\vec{y} = \begin{pmatrix} -2/(a-3)\\1\\1 \end{pmatrix}$ sowie $\vec{z} = \begin{pmatrix} 2/(a+2)\\-1\\4 \end{pmatrix}$

bzw. nach herausheben und kürzen der Quotienten:

$$\vec{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 , $\vec{y} = \begin{pmatrix} -2 \\ a-3 \\ a-3 \end{pmatrix}$ sowie $\vec{z} = \begin{pmatrix} 2 \\ -a-2 \\ 4a+8 \end{pmatrix}$