Berechnung der Eigenwerte und Eigenvektoren zur Matrix

$$A = \left(\begin{array}{rrr} 4 & -1 & 1\\ 0 & 2 & 1\\ -8 & 4 & 0 \end{array}\right)$$

- 1. Das charakteristische Polynom lautet $P(\lambda) = -\lambda^3 + 6\lambda^2 12\lambda + 8$ bzw. $-(\lambda 2)^3 = 0$. Der einzige Eigenwert $\underline{\lambda} = \underline{2}$ tritt mit algebraischer Vielfachheit 3 auf.
- 2. Die Gleichung zur Bestimmung der Eigenvektoren lautet damit

$$\begin{pmatrix} 2 & -1 & 1 \\ 0 & 0 & 1 \\ -8 & 4 & -2 \end{pmatrix} \cdot \vec{x} = \vec{0} \quad \rightsquigarrow \quad \begin{pmatrix} 2 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Für die 3. Komponente erhalten wir also $\underline{x_3=0}$. Die zweite Komponente ist frei wählbar, wir setzen vorteilhaft $\underline{x_2=2}$. Damit ergibt sich aus der 1. Gleichung $\underline{x_1=1}$. Da nur ein freier Parameter zur Verfügung steht, hat der Eigenwert $\lambda=2$ hier die geometrische Vielfachheit 1.

3. Berechnung des ersten verallgemeinerten Eigenvektors \vec{y} zu λ aus der Gleichung $(A - \lambda I)\vec{y} = \vec{x}$:

$$\begin{pmatrix} 2 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ -8 & 4 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Es ergibt sich sofort $\tilde{y}_3 = 2$. Die Wahl von $\tilde{y}_2 = 1$ ergibt $\tilde{y}_1 = 0$. Somit haben wir den ersten verallgemeinerten Eigenvektor \vec{y} bestimmt.

4. Berechnung des zweiten verallgemeinerten Eigenvektors \vec{z} aus der Gleichung $(A - \lambda I)\vec{z} = \vec{y}$:

$$\left(\begin{array}{ccc|c}
2 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
-8 & 4 & -2 & 2
\end{array}\right) \sim \left(\begin{array}{ccc|c}
2 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

Die 2. Zeile erzwingt hier $\underline{\tilde{z}_3} = 1$. Wahl von $\underline{\tilde{z}_2} = 1$ ergibt $\underline{\tilde{z}_1} = 0$

5. Die drei (verallgemeinerten) Eigenvektoren lauten also:

$$\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
 , $\vec{\tilde{y}} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ und $\vec{\tilde{z}} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

Bitte beachten Sie, daß man im Falle von verallgemeinerten Eigenvektoren nicht jedes beliebige Vielfache der jeweiligen Eigenvektoren verwenden darf, da der frei wählbare Parameter t bei der Lösung der inhomogenen Gleichungen nicht einfach "herausgehoben" werden kann!