Analysis 2, SS 2010, 1. Übungsblatt

- 1. Man untersuche die folgenden Funktionenfolgen auf punktweise Konvergenz und bestimme gegebenenfalls die Grenzfunktion. Ist die Funktionenfolge an den jeweils angegebenen Intervallen gleichmäßig konvergent?
 - (a) $f_n(x) = x + \frac{x}{e^{nx}}$ $x \in [0, \infty)$
 - (b) $f_n(x) = n(\sqrt[n]{x} 1)$ $x \in [1, \infty)$
 - (c) $f_n(x) = \frac{x}{n^2} e^{-\frac{x}{n}}$ $x \in [0, \infty)$
 - (d) $f_n(x) = \frac{nx}{1+n^2x^2}, \quad x \in [a,1] \ (0 \le a < 1)$
 - (e) $f_n(x) = \begin{cases} 0, & \text{falls } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{nq} & \text{falls } x = \frac{p}{q}, \ q \in \mathbb{N}, \ p \in \mathbb{N}_0, \ ggT(p,q) = 1 \end{cases}$, $x \in \mathbb{R}$
- 2. Zeigen Sie, dass die beiden Funktionenfolgen

$$f_n(x) = \begin{cases} \frac{1}{x} + \frac{1}{n} & x > 0\\ \frac{1}{n} & x = 0 \end{cases}$$

und $g_n(x) = \frac{1}{n}$ auf der Menge $X = [0, \infty)$ gleichmäßig konvergieren, aber die Folge $\{f_n(x)g_n(x)\}$ auf X nicht gleichmäßig konvergiert.

- 3. Beweisen oder widerlegen Sie die folgende Behauptung: Sei die Funktionenfolge $f_n(x)$ auf der Menge X gleichmäßig konvergent. Dann ist auch die Funktionenfolge $\{\frac{1}{n}f_n(x)\}$ auf X gleichmäßig konvergent.
- 4. Gegeben ist die Funktionenfolge (f_n) mit $f_n(x) = nx(1-x)^n$. Man zeige:
 - (a) (f_n) ist auf [0,1] nicht gleichmäig konvergent.
 - (b) Es gilt für alle $x \in [0, 1]$:

$$\lim_{x \to 0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to 0} f_n(x).$$

5. Gegeben ist die Funktionenfolge (f_n) mit

$$f_n(x) = n^2 x(x-2)(1-x)^n$$
.

- (a) Bestimmen Sie alle $x \in \mathbb{R}$ auf der die Funktionenfolge punktweise konvergiert!
- (b) Auf welchen Teilintervallen von \mathbb{R} konvergiert die Folge f_n gleichmäßig?
- 6. Gegeben ist die Funktionenfolge

$$f_n(x) = \frac{n|x|}{n^2 + x^2}.$$

- (a) Man untersuche (f_n) auf Konvergenz und bestimme gegebenenfalls die Grenzfunktion f.
- (b) Ist die Konvergenz auf dem Intervall [-1, 1] gleichmäßig?
- (c) Zeigen Sie, dass im Intervall [1, 2] $f'(x) = \lim_{n \to \infty} f'_n(x)$ gilt.
- 7. Sei X = [0, 1] und $f_n(x) = \frac{x^n}{n^2} + n$. Untersuchen Sie die Funktionenfolgen $f_n(x)$ und $f'_n(x)$ auf X auf gleichmäßige Konvergenz.
- 8. Zeigen sie, dass die Funktionenreihe $\sum_{n=0}^{\infty} x^n e^{-nx}$ für alle $x \in [0, \infty]$ konvergiert und bestimmen Sie die Grenzfunktion!
- 9. Für welche $x \in \mathbb{R}$ darf die Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + x^2}$$

gliedweise differenziert werden?