An algorithm for solving

\[\sum_{i=1}^{n} a_i x_i^n = b \]

over finite fields

Christiaan van de Woestijne, Universiteit Leiden

Oberwolfach workshop on Finite Fields
7 December 2004
Surroundings

Currently known algorithms for solving equations over finite fields include:

- brute force search
- algorithms for factoring polynomials
- Shanks’ algorithm for taking square (and higher) roots
- methods for multivariate equations based on the above
- Schoof’s algorithm for taking square roots in prime fields

However, all of these are either probabilistic (barring a proof of GRH for some) or take more than polynomial time.
Overview: a tower of algorithms

(This is part of my PhD project with H. W. Lenstra, Jr.)

I. Computing field generators in multiplicative subgroups:

for $G \subseteq \mathbb{F}^*$, find $\alpha \in G$ such that $\mathbb{F} = \mathbb{F}_p(\alpha)$.

II. Writing field elements as sums of like powers:

given $b \in \mathbb{F}^*$, find $x_1, \ldots, x_n \in \mathbb{F}$ such that $b = \sum_{i=1}^{n} x_i^n$.

III. Finding representations by diagonal forms in many variables:

given $a_1, \ldots, a_n \in \mathbb{F}^*$, and $b \in \mathbb{F}^*$, find $x_1, \ldots, x_n \in \mathbb{F}$ such that

$b = \sum_{i=1}^{n} a_i x_i^n$.
Overview: building blocks

I. A multiplicative version of the primitive element theorem (using elementary linear algebra)

II. Selective root extraction (a generalisation of the Tonelli-Shanks algorithm)

III. Reducing the number of terms in a sum of like powers (a bisection-like idea)

IV. Dealing with coefficients other than 1 by means of the “trapezium algorithm” (an algorithmic version of an idea of Dem’yanov and Kneser)
It can be shown that...

- the set of sums of nth powers of elements, S_n, in \mathbb{F} is a subfield of \mathbb{F}.
- $S_n = \mathbb{F}$ iff \mathbb{F} can be generated over \mathbb{F}_p by an nth power in \mathbb{F}.
- if $S_n \neq \mathbb{F}$, we have $n^2 > q$.
- if $S_n = \mathbb{F}$, then every equation of the form
 \[\sum_{i=1}^{n} a_i x_i^n = b \]
 for a_1, \ldots, a_n and b in \mathbb{F}^* is solvable.

The homogeneous variant $\sum_{i=0}^{n} a_i x_i^n = 0$ is always solvable by the Chevalley-Warning theorem.
By comparison...

- the results from the last slide can be much improved if \(q \) is much larger than \(n^2 \). For example, if \(q > n^4 \), then every equation of the form

\[
ax^n + by^n = c
\]

is solvable (Weil 1948).

- the algorithms I will present are not unpractical but probabilistic algorithms will probably do better if \(q \) is much larger than \(n \).
Conventions

In this talk, the phrase “we can compute X” means:

“we know explicitly a deterministic polynomial time algorithm to compute X”.

The same goes for “we can decide Y”.

We will denote by \mathbb{F} a finite field of q elements and characteristic p, given by a polynomial f that is irreducible over the prime field \mathbb{F}_p.

Our algorithms take \mathbb{F} as input; thus the input size is about $\log q$, and our algorithms must finish in time polynomial in $\log q$.
Algorithm I: a generator in a given subgroup (1)

Theorem. Let $G \subseteq \mathbb{F}^*$ be a multiplicative subgroup; we can compute $\beta \in G$ such that β generates \mathbb{F} over its prime field, or decide that no such α exists.

Main (in fact only) example: $G = \mathbb{F}^n$ for some positive integer n.

Proof. Let $n = [\mathbb{F}^* : G]$ and let α be the given generator of \mathbb{F}.

If $K_1 = \mathbb{F}_p(\gamma_1^n)$ and $K_2 = \mathbb{F}_p(\gamma_2^n)$ are subfields of \mathbb{F}, we can compute $\gamma \in \langle \gamma_1, \gamma_2 \rangle$ such that

$$\gamma^n \text{ generates } \mathbb{F}_p(\gamma_1^n, \gamma_2^n) \text{ over } \mathbb{F}_p$$

by means of a elementary linear algebra.
Building block I: A “multiplicative” primitive element theorem

Lemma. Let L/K be a cyclic extension of fields of degree d, and let b_1,\ldots,b_d be a K-basis for L. Then at least $\varphi(d)$ of the b_i generate L as a field over K.

Now suppose $\alpha \in L$ has degree e over K and β has degree f. The degree of β over $K(\alpha)$ is given by $g = \text{lcm}(e,f)/e = f/g\text{d}(e,f)$, so a basis of $K(\alpha,\beta)$ is given by

$$(\alpha^i \beta^j \mid i = 0,\ldots,e-1, j = 0,\ldots,g-1).$$

One of these elements generates $K(\alpha,\beta)$ over K!

Obviously, by induction we may extend this result to systems of more than two generators.
Algorithm I: a generator in a given subgroup (2)

Proof (ctd.) We start induction with \(K = \mathbb{F}_p = \mathbb{F}_p(1^n) \). Assume now we have \(K = \mathbb{F}_p(\gamma_1^n) \). If \(|K| \leq n \), we find \(\gamma_2 \in \mathbb{F}^* \) with \(\gamma_2^n \notin K \).

If no such \(\gamma_2 \) exists, the algorithm fails (and rightly so)!

If \(|K| > n \), then at least one of \((\alpha + c_i)^n \), where \(c_0, \ldots, c_n \) are distinct elements of \(K \), is not in \(K \); now put \(\gamma_2 = \alpha + c_i \). (Recall that \(\mathbb{F} = \mathbb{F}_p(\alpha) \).

Now in either case, adjoin \(\gamma_2^n \) to \(K \) and compute \(\gamma \) with \(K = \mathbb{F}_p(\gamma^n) \), using Building block I. \(\square \)
Building block II: selective root extraction

Theorem. If a_0, a_1, \ldots, a_n are in \mathbb{F}^*, then we can compute some $\beta \in \mathbb{F}^*$ such that, for some i, j with $0 \leq i < j \leq n$, we have

$$a_i/a_j = \beta^n.$$

Proof. Let $H = \langle a_0, \ldots, a_n \rangle$. The a_i cover the cosets of H modulo H^n, so there exist i and j such that $a_i/a_j \in H^n$.

We can factor n into primes ℓ and use this to compute generators γ_ℓ for the ℓ-parts of H. Now, we compute an nth root β of a_i/a_j using these generators γ_ℓ, by means of the Tonelli-Shanks algorithm. \qed
Algorithm II: sums of like powers

Theorem. Let b be in \mathbb{F}^* and n a positive integer. We can decide if b is in S_n and if so, we can compute x_1, \ldots, x_n such that $b = \sum_{i=1}^{n} x_i^n$.

Proof. If $n^2 \geq q$, we have enough time to enumerate all possibilities.

If $n^2 < q$, then $S_n = \mathbb{F}$, so the answer is yes. We use Algorithm I to compute $\gamma \in \mathbb{F}$ such that γ^n generates \mathbb{F} over \mathbb{F}_p; this gives us

$$b = \sum_{i=0}^{[\mathbb{F} : \mathbb{F}_p] - 1} b_i \gamma^{ni}.$$

This is a sum of nth powers with at most $(p - 1) \cdot [\mathbb{F} : \mathbb{F}_p]$ terms!

Now use Building blocks II and III to come down to just n terms. \qed
Building block III: reducing sums of like powers

Theorem. Given y_1, \ldots, y_N and $b \in \mathbb{F}^*$ with $\sum y_i^n = b$, we can compute $x_1, \ldots, x_n \in \mathbb{F}^*$ such that $\sum_{i=1}^n x_i^n = b$.

Proof. Divide y_1, \ldots, y_N into $n+1$ roughly equal groups G_0, \ldots, G_n. Let S_i denote the sum of all terms in the first $i+1$ groups.

If one of the S_i is zero, we discard all terms in the first $i+1$ groups. Otherwise, we use **selective root extraction** to compute $\beta \in \mathbb{F}^*$ with

$$S_i / S_j = \beta^n.$$

(assume $i > j$). This means we can **discard the groups** G_{j+1} up to G_i, provided we multiply all terms in the first $i+1$ groups by β. This trick is applicable as long as we have at least $n+1$ terms. \square
Algorithm III: representations by diagonal forms

Theorem. Let b be in \mathbb{F}^* and n a positive integer. For any $a_1, \ldots, a_n \in \mathbb{F}^*$ we can decide if the equation

$$b = \sum_{i=1}^{n} a_i x_i^n$$

is solvable, and if so, we can compute a solution.

Proof. Again, if $n^2 \geq q$, we can just enumerate all possibilities.

If $n^2 < q$, there is a solution. Write $a_0 = -b$. We use now Algorithm II to write the elements b/a_i (for $i = 1, \ldots, n$) as sums of nth powers, so we get

$$-a_i \sum_j y_{ij}^n = -b = a_0 \cdot 1^n.$$
Building block IV: the trapezium algorithm (1)

We now have a system of the form

\[
\begin{align*}
-a_0(y_{0,1}^n + \cdots + y_{0,n}^0) &= 0 \\
-a_1(y_{1,1}^n + \cdots + y_{1,n}^1) &= a_0x_{1,0}^n \\
& \vdots \\
-a_n(y_{n,1}^n + \cdots + y_{n,n}^n) &= a_0x_{n,0}^n + \cdots + a_{n-1}x_{n,n-1}^n
\end{align*}
\]

Recall that we wrote \(a_0 = -b\). If \(h_i = 0\) for some \(i \geq 1\), we are done!

We try to lower the \(h_i\) by bringing the last term \(a_i y_{i,h_i}^n\) to the other side. We get the sequence

\[
(a_0 y_{0,h_0}^n, a_0 x_{1,0}^n + a_1 y_{1,h_1}^n, \ldots, a_0 x_{n,0}^n + \cdots + a_{n-1} x_{n,n-1}^n + a_n y_{n,h_n}^n).
\]
Building block IV: the trapezium algorithm (2)

The sequence

\[
(a_0 y_0, h_0, a_0 x_1, 0 + a_1 y_1, h_1, \ldots, a_0 x_n, 0 + \ldots + a_{n-1} x_n, n-1 + a_n y_n, h_n).
\]

has \(n + 1\) elements, say \(c_0, \ldots, c_n\). If one is zero, we are done!

Otherwise, use selective root extraction to compute \(\beta \in \mathbb{F}^*\) with

\[
\beta^n = c_i / c_j, \quad \text{i.e.} \quad c_i = \beta^n c_j
\]

(assume \(i > j\)).

Replace now the \(i\)th term in the sequence by \(\beta^n\) times the \(j\)th term, and we can reduce \(h_i\) by one!

Thus, in at most \(n^2\) steps, we will get one of the \(h_i\) down to zero. □
Applications (for $n = 2$)

If $n = 2$ and the characteristic of \mathbb{F} is odd, then every form is diagonal. Furthermore, in characteristic 2, zeros of quadratic forms can be found by means of linear algebra.

Corollary. Given a quadric hypersurface over a finite field \mathbb{F}, we can compute a rational point on it.

Corollary. Given two regular quadratic spaces V and W over a finite field \mathbb{F} (char. $\neq 2$), such that $\dim V \geq \dim W + 1$, we can compute an isometric embedding of W into V.

On the other hand, if $\dim V = \dim W$, we can reduce the problem of finding an isometry from V to W to the computation of just one square root in \mathbb{F}.
More applications (for $n = 2$)

Corollary. (Bumby) Given a prime p, we can compute integers x_1, \ldots, x_4 such that $p = x^2 + y^2 + z^2 + w^2$. This works also for any other Euclidean quaternion orders.

Corollary. Given a central simple algebra A of degree 2 over a finite field \mathbb{F}, we can compute an explicit isomorphism from A to a 2×2-matrix algebra over \mathbb{F}.