Algebraic aspects of number systems

Christiaan van de Woestijne
Institut für Mathematik B
Technische Universität Graz, Austria

Supported by the FWF, project S9606

Journées de Numération (cítací dni)
Prague, 25–30 May 2008
Definitions

We define a pre-number system as a triple \((V, \phi, D)\), where

- \(V\) is a finite free \(\mathbb{Z}\)-module;
- \(\phi\) is an expanding endomorphism of \(V\);
- \(D\) is a system of representatives of \(V\) modulo \(\phi(V)\).

A pre-number system \((V, \phi, D)\) is a number system if there exist finite expansions

\[
a = \sum_{i=0}^{\ell} \phi^i(d_i) \quad (d_i \in D)
\]

for all \(a \in V\).

We are ultimately interested in the classification of all number systems.
Examples

- \((\mathbb{Z}, b, \{0, \ldots, |b| - 1\})\) is a pre-number system whenever \(|b| \geq 2\), and a number system if and only if \(b \leq -2\).

- \((\mathbb{Z}[i], b, \{0, \ldots, |b|^2 - 1\})\) is a pre-number system whenever \(|b| > 1\), and a number system if and only if \(b = -a \pm i\), for some \(a \in \mathbb{N}\).

- \((\mathbb{Z}, -2, \{d, D\})\) is a number system if and only if ... (answer at end of talk)

- \((\mathbb{Z}[X]/((X - 5)(X - 7)), X, \{1, -1, 3, -3, 5, X, X - 2, -X + 2, X - 4, -X + 4, X - 6, -X + 6, X - 8, -X + 8, -X + 10, 2X - 7, 2X - 9, -2X + 9, 2X - 11, -2X + 11, 2X - 13, -2X + 13, -2X + 15, 3X - 14, 3X - 16, -3X + 16, -3X + 18, 3X - 18, -3X + 20, 4X - 21, 4X - 23, -4X + 23, -4X + 25, 5X - 28, -5X + 30\})\) is a number system (recall from last year?)
Example: the odd digits

Assume $V = \mathbb{Z}$ and ϕ is multiplication by some integer b. Let b be odd, $|b| \geq 3$, and let

$$D_{\text{odd}} := \{-|b| + 2, -|b| + 4, \ldots, -1, 1, \ldots, |b| - 2, b\}.$$

This is a valid digit set for all odd b.

For $b = 3$: it’s $\{-1, 1, 3\}$. We get $0 = 3 \cdot 1 + (-1) \cdot 3$.

<table>
<thead>
<tr>
<th>a</th>
<th>$(a)_{3, \text{odd}}$</th>
<th>a</th>
<th>$(a)_{3, \text{odd}}$</th>
<th>a</th>
<th>$(a)_{3, \text{odd}}$</th>
<th>a</th>
<th>$(a)_{3, \text{odd}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13</td>
<td>5</td>
<td>111</td>
<td>-1</td>
<td>1</td>
<td>-6</td>
<td>1133</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>13</td>
<td>-2</td>
<td>11</td>
<td>-7</td>
<td>1111</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>7</td>
<td>111</td>
<td>-3</td>
<td>113</td>
<td>-8</td>
<td>1131</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8</td>
<td>31</td>
<td>-4</td>
<td>11</td>
<td>-9</td>
<td>1131</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>9</td>
<td>113</td>
<td>-5</td>
<td>111</td>
<td>-10</td>
<td>11311</td>
</tr>
</tbody>
</table>
The dynamic mapping

Define functions

\[d : V \rightarrow D : d(a) \text{ is the unique } d \in D \text{ with } a - d \in \phi(V); \]
\[T : V \rightarrow V : T(a) = \phi^{-1}(a - d(a)). \]

We call \(T \) the dynamic mapping of \((V, \phi, D)\).

Theorem \((V, \phi, D)\) is a number system if and only for all \(v \in V \) there exists \(n \geq 0 \) with \(T^n(v) = 0 \).

Recall that a pre-number system has a finite attractor \(A \subseteq V \) with the properties

- for all \(a \in V \) we have \(T^n(a) \in A \) if \(n \) is large enough.
- \(T \) is bijective on \(A \).

Theorem \((V, \phi, D)\) is a number system if and only if the attractor contains 0, and consists exactly of one cycle under \(T \).
The easy case

Theorem (Kovács-Germán-vdW) Given \((V, \phi)\), let \(D\) be a set of shortest (nonzero) digits modulo \(\phi\), with respect to a norm \(\| \cdot \|\) on \(V\) that satisfies \(\|\phi^{-1}\| < \frac{1}{2}\). Then \((V, \phi, D)\) is a number system.

Such a norm exists when \(|\alpha| > 2\) for all eigenvalues \(\alpha\) of \(\phi\).

Theorem (Curry, others?) Let \(n \geq 1\), let \(\phi\) be an endomorphism of \(\mathbb{Z}^n\), and let

\[D = \phi \left(\left[-\frac{1}{2}, \frac{1}{2} \right]^n \right) \cap \mathbb{Z}^n. \]

If we have \(|\alpha| > 2\) for all singular values of \(\phi\), then \((\mathbb{Z}^n, \phi, D)\) is a number system.
A finite free \mathbb{Z}-module V with endomorphism ϕ is automatically a module over the ring $\mathbb{Z}[\phi] \subseteq \text{End}_\mathbb{Z}(V)$. We have

$$\mathbb{Z}[\phi] \cong \mathbb{Z}[X]/(f_{\text{min}}(\phi)).$$

If $\dim V = \dim \mathbb{Z}[\phi] = \deg(f_{\text{min}}(\phi))$, then V is isomorphic, as a $\mathbb{Z}[\phi]$-module, to an ideal of $\mathbb{Z}[\phi]$.

Theorem (Jordan-Zassenhaus) If $f \in \mathbb{Z}[X]$ is squarefree, then the number of isomorphism classes of ideals of $\mathbb{Z}[X]/(f)$ is finite.

It is important to consider also the classes of noninvertible ideals!
Example: let $R = \mathbb{Z}[\sqrt{5}]$. The maximal order $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ is isomorphic to the non-principal ideal $I_2 = (2, 1 + \sqrt{5})$ of R! Ugly: $N(I_2) = 2$, but $N(I_2^2) = 8$!!

The matrix of multiplication by $\sqrt{5}$ on I_2 is $M = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$. It follows that this matrix is not similar over \mathbb{Z} to the companion matrix of $X^2 - 5$, although it has the same characteristic polynomial.

The singular values of M also equal to $\pm \sqrt{5}$, so by Curry’s theorem, a valid digit set for basis M on \mathbb{Z}^2 is given by $\left(M \left[\begin{array}{c} -\frac{1}{2} \\ \frac{1}{2} \end{array} \right] \right)^2 \cap \mathbb{Z}^2 = \{ (\pm 1, 0), (0, \pm 1), (0, 0) \}$.

It follows that $\{0, 2, -2, 1 + \sqrt{5}, -1 - \sqrt{5}\}$ is a valid digit set for basis $\sqrt{5}$ on I_2. The same digits divided by 2 form a valid digit set for $\sqrt{5}$ on the maximal order.
If \(\dim \mathbb{Z}[\phi] < \dim V \), then things become complicated. Sometimes, we have a direct sum decomposition:

- if \(\phi \) is the identity, then \(\mathbb{Z}[\phi] \cong \mathbb{Z} \), and we have \(V \cong \mathbb{Z}^n \) as a \(\mathbb{Z} \)-module.

- if \(V \) is the integral quaternions \(\mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}k \) and \(\phi \) is (left) multiplication by \(i \), then \(V \cong \mathbb{Z}[i] \oplus \mathbb{Z}[i]j \).

However, \(V \) may be indecomposable as a \(\mathbb{Z}[\phi] \)-module.

Theorem (Heller-Reiner-Dade) If \(p \) is a prime and \(f = X^{p^i} - 1 \), with \(i \geq 3 \), then there exist infinitely many isomorphism classes of indecomposable modules over the ring \(\mathbb{Z}[X]/(f) \).
The tile of the pre-number system \((V, φ, D)\) is

\[
T = \left\{ \sum_{i=1}^{\infty} \phi^{-i}(d_i) : d_i \in D \right\}.
\]

The set \(T\) covers \(V \otimes \mathbb{R}\), with tiling lattice \(\Lambda\), which is the \(\mathbb{Z}[φ]\)-submodule of \(V\) generated by \(D - D\), the differences of the digits. Translation of the digit set just induces a translation of \(T\); the attractor \(A\) is contained in \(-T\). This provides an easy proof of

Theorem. Given a pre-number system \((V, φ, D)\), for each \(t \in V\), let \(D_t = \{d + t : d \in D\}\). Then there are only finitely many \(t \in V\) such that \((V, φ, D_t)\) is a number system.

Another method shows that we can leave \(0 \in D\) in place, and obtain the same conclusion.
n-fold pre-number systems

Let \((V, \phi, D)\) be a pre-number system with attractor \(A\). For every positive integer \(n\), define

\[
D^n = \left\{ \sum_{i=0}^{n-1} \phi^i(d_i) : d_i \in D \right\},
\]

the set of all length-\(n\) expansions on base \(\phi\) with digits in \(D\). Then \((V, \phi^n, D^n)\) is again a pre-number system, called the \(n\)-fold pre-number system of \((V, \phi, D)\), and we have

- \(A^n\), the attractor of \((V, \phi^n, D^n)\), is equal to \(A\).
- \((V, \phi^n, D^n)\) is a number system if and only if \((V, \phi, D)\) is a number system, and \(\text{gcd}(n, |A|) = 1\).

This theorem is very useful for the computation of attractors, since the bounds on the size of \(A\) derived from \(D^n\) are often smaller than those derived from \(D\).
\textbf{n-fold pre-number systems (2)}

Theorem (folklore) Let $\| \cdot \|$ be a norm on $V \otimes \mathbb{R}$, and let

$$ S = \left\{ v \in V : \|v\| \leq \max_{d \in D} \|d\| \frac{\|\phi^{-1}\|}{1 - \|\phi^{-1}\|} \right\}; $$

then the attractor of (V, ϕ, D) is contained in S.

Example: let $V = \mathbb{Z}[i]$, with the complex norm $\| \cdot \|$, and let ϕ be multiplication by $b = -1 + i$. We let $D = \{0, 1, 2, 3\}$, and compute

$$ L_n = \max_{d \in D^n} \|d\| \frac{\|\phi^{-1}\|}{\|b\|^{n - 1}} $$

for $n = 1, 2, \ldots$:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_n</td>
<td>7.24</td>
<td>4.24</td>
<td>3.67</td>
<td>3.61</td>
<td>3.28</td>
<td>3.46</td>
<td>3.32</td>
<td>3.22</td>
</tr>
</tbody>
</table>

Of course, the computation of L_n takes exponential time in n.

Assume $V = \mathbb{Z}$.

Theorem (Matula 1982) Let $k \leq d \leq K$ for all $d \in D$, and let $a \in A$. Then

$$
\begin{align*}
\begin{cases}
\frac{-K}{b-1} \leq a \leq \frac{-k}{b-1} & \text{if } b > 0; \\
\frac{-kb-K}{b^2-1} \leq a \leq \frac{-Kb-k}{b^2-1} & \text{if } b < 0.
\end{cases}
\end{align*}
$$

One should compare these bounds with the generic $|a| \leq \frac{\max|d|}{|b|-1}$.

The proof uses the twofold number system, in case $b < 0$, to reduce to the case $b > 0$.
Infinitely many digit sets in \mathbb{Z}

Question: can one shift just one digit to obtain other good digit sets?

Answer: under all kinds of technical assumptions, Yes.

Theorem (A generalisation of Matula 1982 and Kovács and Pethő 1983) Let $(\mathbb{Z}, b, \mathcal{D})$ be a number system, where $B = |b| \geq 3$ and where $|d| \leq B$ for all $d \in \mathcal{D}$. Fix some $d \in \mathcal{D}$ and some integer u with $|u| \leq B - 1$; if $0 \not\in \mathcal{D}$, assume $|u| \leq B - 2$. Let \mathcal{B} be the set of digits in \mathcal{D} that occur in the expansions of 0, $u+1$, u, and $u-1$. If $d \not\in \mathcal{B}$, then we may replace d in \mathcal{D} by $\tilde{d} = d - ub^k$, for any $k \geq 1$, without affecting the number system property.

Note that $|\mathcal{B}| \leq 6$ if $b > 0$ and $|\mathcal{B}| \leq 8$ if $b < 0$. For $|b| = 3$, the Theorem does not work.
Examples of infinite families

We write $B = |b|$. For $B = 3$ (Matula): \{0, 1, 2 − 3^k\} when $b = 3$, and \{0, 1, 2 − 9^k\} when $b = −3$. Can take $\tilde{d} = d − ub^k$, for $d \not\in B$.

<table>
<thead>
<tr>
<th>b</th>
<th>D</th>
<th>u</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 4</td>
<td>${-1, 0, 1, \ldots, b − 2}$</td>
<td>1</td>
<td>${0, 1, 2}$</td>
</tr>
<tr>
<td>$\leq −4$</td>
<td>${0, 1, \ldots, B − 1}$</td>
<td>$−1$</td>
<td>${-1, 0, b − 2}$</td>
</tr>
<tr>
<td></td>
<td>${1, 2, \ldots, B}$</td>
<td>1</td>
<td>${0, 1, 2}$</td>
</tr>
<tr>
<td></td>
<td>${-B, 1, 2, \ldots, B − 1}$</td>
<td>$−1$</td>
<td>${0, 1, B − 2, B − 1}$</td>
</tr>
<tr>
<td>≥ 5 odd</td>
<td>odd digits</td>
<td>1</td>
<td>${1, 2, B − 1, −B}$</td>
</tr>
<tr>
<td>$\leq −5$ odd</td>
<td>odd digits</td>
<td>$−1$</td>
<td>${-1, 1, −b + 2, b}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$−3$</td>
<td>${1, −1, −3, B − 4, B − 2}$</td>
</tr>
</tbody>
</table>
The proof

Let \tilde{A} be the attractor for base b and digit set \tilde{D}, which is D with d replaced by \tilde{d}.

Lemma If $\tilde{d} = d - ub^k$, then the expansions of all $a \in \tilde{A}$ on D have length bounded by $k + 2$ or so.

Now we construct a finite state transducer that replaces all occurrences of d by \tilde{d}, and keeps the length under $k + 2$ or so.

Lemma If $d \notin B$, then the finite state transducer always terminates on a word containing only \tilde{d} and no d.
In the figure, we see all valid digit sets for $b = -2$ with both digits less than 200 in absolute value. What is the structure of this set?
Theorem Let \(d, D \in \mathbb{Z} \), with \(d < D \). Then \((\mathbb{Z}, -2, \{d, D\})\) is a number system if and only if

1. one of \(\{d, D\} \) is even and one is odd;
2. neither of \(d \) and \(D \) is divisible by 3, except when the even digit is 0;
3. we have \(2d \leq D \) and \(2D \geq d \);
4. \(D - d = 3^i \) for some \(i \geq 0 \).

Example Thus, \(\{1, 3^k + 1\} \) is valid for \(b = -2 \), for all \(k \geq 0 \).

The only valid digit sets for \(b = -2 \) that have 0 are \(\{0, 1\} \) and \(\{0, -1\} \).
The proof (1)

It is clearly necessary that we have one even and one odd digit. Also, each digit d divisible by 3 induces a 1-cycle $d/3$, so this is only admissible for $d = 0$.

Lemma When $|b| = 2$, the attractor A is an interval.

Lemma Let $d < D$ be digits for $b = -2$. Then

$$A = \left\{ \left[\frac{2d - D}{3} \right], \ldots, \left[\frac{2D - d}{3} \right] \right\}.$$

In other words, Matula’s bounds are sharp for $b = -2$.

Lemma We have $0 \in A$ if and only if $2d \leq D$ and $2D \geq d$.
The proof (2)

It remains to determine the cycle structure of A. Let $D = \{d_0, d_1\}$, and let $\delta = d_0 - d_1$. If a starts a cycle of length ℓ, then

$$(1 - b^\ell)a = \sum_{i=0}^{\ell-1} d_i b^i = d_0 \frac{b^\ell - 1}{b - 1} - \delta \sum_{i=0}^{\ell-1} \varepsilon_i b^i,$$

for some $\varepsilon \in \{0, 1\}$. With $b = -2$, we find

$$3\delta \text{ divides } (d_0 - 3a)((-2)^\ell - 1).$$

Because A is an interval of length $|\delta|$, except in some small cases we can assume that $\gcd(3\delta, d_0 - 3a) = 1$! Now we do some number theory to obtain

Lemma There is exactly one cycle in A if and only if $|\delta| = 3^i$ for some $i \geq 0$, and $3 \nmid (d_0 d_1)$ if $i \geq 1$.