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ABSTRACT
For rationally fibred surfaces over Q and also over R, an ef-
fective algorithm exists that decides if such a surface has a
proper parametrisation. This algorithm uses a diagonalised
form of the surface equation. We show, using recent algo-
rithms for quadratic forms, that diagonalisation is not neces-
sary. The resulting algorithm only uses operations on poly-
nomials (as opposed to rational functions), which keeps all
occurring degrees small and avoids spurious factors in the
discriminant.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices

General Terms
Algorithms,Design
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1. INTRODUCTION
We consider the problem of computing a proper parametri-

sation of a rationally fibred surface. Such parametrisations
are of obvious use in applications that must give a graph-
ical presentation of a surface, seen as a subset of three-
dimensional space; they give much easier access to the points
on the surface than the defining equations of the surface usu-
ally do.

A rationally fibred surface is an algebraic surface S to-
gether with a rational map φ : S → P1 such that the generic
fibre is an irreducible curve of genus zero. This definition is
taken from J. Schicho’s paper [4], which uses the equivalent
name surface with a rational pencil. We would like to re-
fer to this paper for further background on rationally fibred
surfaces.
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Implicit in the definition is the base field K over which
the surface is defined. If K is the field of real or complex
numbers, then computations on the surface will always en-
counter rounding errors and numerical analysis has to be
used to bound these errors. If, instead, the field K admits
exact arithmetic, then exact computations on the surface
are possible; here, one thinks of the rational numbers Q, an
algebraic number field, or a finite field. The computations in
this paper are generally independent of the base field, with
the possible exception of fields of characteristic 2.

A special case of parametrisation is the case where the
surface S is really isomorphic (over the base field K) to the
two-dimensional plane over K. In this case, there exists a
so-called proper parametrisation, i.e., there exist dominant
rational maps φ : P2 → S and ψ : S → P2 that are inverses
to each other; and the surface S is then called rational.

The cited paper [4] develops an algorithm for deciding
whether a rationally fibred surface defined over Q is ratio-
nal over Q, and if it is, to compute a proper parametrisation.
This is done by changing the defining equations of S in such
a way that S is defined by one ternary quadratic form f
over the function field Q(t), and then minimising the dis-
criminant of this quadratic form. After this, one computes
the minimal index of the defining equation, in order to de-
cide if a parametrisation exists and which form it takes. The
minimal index is a positive integer and at least the property
of having minimal index greater or equal to 4 is a geometric
invariant of the surface. A definition in terms of the surface
equation is given in Section 4.

To do the minimisation, it is conceptually easy to diag-
onalise the form f , i.e., applying a change of variables so
that f takes the form

D0(t)x
2
0 +D1(t)x

2
1 +D2(t)x

2
2 (1)

for certain D0, D1, and D2 in K(t). For example, the dis-
criminant of the form is now simply equal to D0D1D2. How-
ever, as shown by examples in [4], the actual minimisation
destroys again the diagonal form of the equation.

There are more disadvantages attached to the use of di-
agonalisation. Over Q(t), the coefficients Di could easily
get large denominators, also increasing the size of the dis-
criminant of the equation when denominators are cleared.
Keeping the discriminant as small as possible is particularly
relevant if in the end the parametrisation problem must be
solved by computing a zero of a quadratic form over Q, as
happens in some cases [4, Section 3].

When performing the computation over R or C, the di-
agonalisation is a potential source of numerical instability,



and it would be useful to be able to avoid it. The reason
for this is that after diagonalisation we clear denominators,
and hence these denominators will appear as square factors
of the discriminant.

We present a modified version of Schicho’s algorithm, us-
ing techniques developed by D. Simon [6] for discriminant
reduction on non-diagonal quadratic forms. The techniques
in [6] are only given for forms over Z; we show how they
can be applied when the form is defined over a polynomial
ring. We also show how to compute the degree defect of
the form when it is not diagonal; this allows us to replace
many basis reductions (in the form of module Gröbner basis
computations), in [4], by one final basis reduction.
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2. FINDING A SECTION
Let S be a rationally fibred surface over a field K; let

φ : S → P1 denote its fibration map. We will assume that
K does not have characteristic 2. By [4, Section 1], we may
assume that S is given by an irreducible quadratic form

f =
X

0≤i,j≤2

aij(t)xixj (2)

with coefficients aij in the polynomial ring K[t]. The coef-
ficient matrix A = [aij]ij of f gives rise to the discriminant
disc f of f , which is defined to be det(A). The discriminant
is also a polynomial in t; we are only interested in disc f up
to multiplication with scalars from K.

A parametrisation of S is obtained from a section of the
fibration map φ, or equivalently, a nontrivial zero of the form
f . Namely, consider the curve {f = 0} in the projective
plane P2 over K(t), and let x = (x0 : x1 : x2) ∈ P2(K(t))
be a point on the curve. Then we can parametrise all zeros
of f over K(t) using the classical method of projecting lines
from x in all directions and computing the second point of
intersection of those lines with the curve {f = 0}. This
parametrisation of the curve {f = 0} has coefficients over
K(t); we now let t run over all elements of K to obtain a
surface parametrisation.

The different cases that may arise from the index compu-
tation are as follows [4, Section 3]. If the index is either 0 or
2, the problem of finding a section is reduced to the solution
of a ternary or a quaternary quadratic form over the base
field K. The index cannot be 1; in the case of index 3, a
parametrisation can be given without further computation;
and for index 4 or higher, no proper parametrisation exists,
as shown by results of Iskovshikh (quoted in [4]).

We want to comment on the case of index 0 or 2, when the
base field is Q. The problem of finding zeros of quadratic
forms over Q has been long studied. Theoretically, the case
of ternary forms was solved by Lagrange, who reduced the
problem to the case of diagonalised forms (see [1]). The cited
paper [6] gives a very efficient approach to the ternary case,
by avoiding diagonalisation and hence the need to factor
large integers. A preprint by the same author [5] handles
the case of quaternary forms.

3. DISCRIMINANT MINIMISATION
In order to simplify the task of finding a zero of f , we try

to make the degree of disc f as low as possible. This is done
by looking at the irreducible factors of disc f one by one and
seeing if they are removable. If a factor g is removable, then
we can compute a change of variables, of determinant g or
g2, such that all coefficients of f become divisible by g; we
divide f by g, and the factor is gone.

Diagonalisation. The classical Gram-Schmidt process gives
us a matrix T ∈ GL(3,K(t)) such that A′ = T ∗AT is di-
agonal (here the star ∗ denotes the transpose matrix), and
hence f(Tx) is of the form (1). As Lemma 1 of [4] shows, the
use of the diagonal form of f makes the removal of squared
factors from the discriminant easy.

However, the removal of single factors from disc f brings
f in a non-diagonal form again, and this cannot be circum-
vented (see Example 5 in [4]). Besides, diagonalisation does
not work over a field of characteristic 2. Finally, the diago-
nalisation process introduces denominators, as we have the
following well-known relations, where the Di are as in (1).

Lemma 3.1 For i = 0, . . . , 2, we have

Di =
det ([akl]0≤k,l≤i)

det ([akl]0≤k,l≤i−1)
.

If we now want to bring equation (1) back in a form with
polynomial coefficients only by clearing denominators, then
the determinants of the minor matrices of A will enter into
these coefficients, and will therefore enter twice into the dis-
criminant of f . Later on, we must remove these factors
again.

There is one interesting aspect about diagonalisation that
must be kept in mind. Depending on the base field, it is
possible for one of the minor determinants of A to be zero.
If this is the case, the Gram-Schmidt process cannot con-
tinue, and a diagonalisation must be found in another way
(this more general process is known as Lagrange orthogo-
nalisation). However, for our purposes this situation is very
interesting, since if Di = 0 while Di−1 6= 0, it shows that
the subform of f given by the variables x0, . . . , xi is degen-
erate, making it trivial to find a zero to f : just find a vector
(x0, . . . , xi) in the kernel of the upper left ith minor of A,
and then (x0, . . . , xi, 0, . . . , 0) will be the desired zero of f .

An alternative approach. Having discussed the advan-
tages and disadvantages of diagonalisation from an algebraic
viewpoint, we now present an alternative approach to the
minimisation of the discriminant that does not assume a di-
agonal form for f . The details of this approach are due to
D. Simon for quadratic forms over Z (see [6]); we carry them
over here to forms with coefficients in the polynomial ring
K[t]. The method uses only linear algebra over the base field
K, hence the results of this section would also be applicable
if K would have characteristic 2.

Let g be an irreducible factor of disc f . The first propo-
sition shows that we can assume that all entries in the first
row and column of A are divisible by g.

Proposition 3.2 Let A be a n×n-matrix over K[t], and let
g be an irreducible divisor of detA. There exists an efficient
deterministic algorithm that computes U ∈ GL(K[t]) and
d ≥ 0 such that



(i) the kernel of A modulo g has dimension d;
(ii) the first d columns of U contain a basis of this kernel

modulo g;
(iii) the entries in the (n−k)th column of U have degree at

most k deg g.

Proof. Algorithm 2.2 from [6] does exactly this, if every-
where Z is replaced by K[t] and the prime number p is re-
placed by the irreducible polynomial g. The content of the
algorithm is to reduce the matrix A modulo g, to transform
this matrix over the field K[t]/(g) by means of elementary
column operations so that its first d columns are 0 and the
others are linearly independent, and finally to lift the oper-
ations done over K[t]/(g) to K[t] and applying them to the
matrix A. Because Algorithm 2.2 applies only elementary
column operations on A, it is clear that U has determinant
±1.

Now becauseA is symmetric andAU has its first d columns
divisible by g, we can assume that U∗AU has its first d
columns and rows divisible by g. Let vg denote the g-adic
valuation on K[t], i.e., for a polynomial h ∈ K[t], vg(h)
equals the number of factors g contained in h.

Lemma 3.3 If vg(disc f) = v, and d is dim ker(A (mod g))),
then we have v ≥ d.

Proof. Obvious, because every row or column that is divis-
ible by g adds a factor of g to the determinant.

We first show that removal of repeated factors of disc f is
easy.

Proposition 3.4 Let A be a symmetric 3 × 3-matrix over
K[t], and let g be an irreducible polynomial in K[t] such that
g2 divides detA.

(i) Assume that dim ker(A (mod g)) = 1. Then there ex-
ists a 3×3-matrix T over K[t] such that T ∗AT/g2 has
entries in K[t] and determinant detA/g2.

(ii) Assume that dim ker(A (mod g)) ≥ 2. Then there ex-
ists a 3× 3-matrix T over K[t] such that T ∗AT/g has
entries in K[t] and determinant detA/g.

In both situations, the matrix T can be efficiently computed.

Proof. Let U be the matrix given by the algorithm of Propo-
sition 3.2 applied to A. Then the matrices

T = U

0

@

1 0 0
0 g 0
0 0 g

1

A and T = U

0

@

1 0 0
0 1 0
0 0 g

1

A

respectively, are the desired transformation matrices. In the
first case, we use the fact that the top left element of A∗UA
is divisible by g2.

Of course, if dim ker(A (mod g)) turns out to be 3, the
entire matrix A is divisible by g and we can trivially remove
3 factors g from detA. Note also that the matrices given
in the proof above correspond to the operations done in the
proof of Lemma 1 of [4].

Proposition 3.5 Let A be a symmetric 3 × 3-matrix over
K[t]. Let g be an irreducible polynomial in K[t] dividing
detA exactly once, and such that the quadratic form defined
by the matrix A factors modulo g. Then there exists a 3×3-
matrix T over K[t] such that T ∗AT/g has entries in K[t]
and determinant detA/g.

Proof. This is Theorem 4 in [4]. Note that the proof given
there works as stated in the non-diagonal case as well.

As already indicated in [4, Remark 3], a simple factor g of
disc f is removable if and only if the form f has a nontrivial
zero in the completion of K(t) with respect to the valuation
defined by g. Such a nontrivial zero immediately leads to
a factorisation of f modulo g, and vice versa, since f is
degenerate modulo g. This proves the following result.

Theorem 3.6 Let A be a symmetric 3×3-matrix over K[t],
where K is any field. Then there exists a 3×3-matrix T over
K[t] such that

T ∗AT = DA′

where D divides detA and detA′ is squarefree and of min-
imal degree. The matrix T is efficiently computable, if we
can compute efficiently in K.

4. THE DEGREE DEFECT
After we know the minimal degree of disc f that can be

obtained by changing variables in f , we must minimise the
degree defect of f by suitably weighing the variables xi. This
is done by a simple method that replaces the rather elabo-
rate computations done in [4] for keeping the degree defect
small. A degree defect of 0 or 1 can always be accomplished,
and is enough for computing the minimal index of the sur-
face. See also [4, Section 2] for the algebraic background,
using weighted homogenisation of the equation (2), of the
degree defect.

A grading W of the variables x0, x1, x2 of f is a triple
(w0, w1, w2) of integers. We allow gradings with zero or
negative components.

Definition 4.1 Let W be a grading of the variables of f .
(i) The degree of f with respect to W is

degW (f) = max
i,j

(deg aij + wi + wj).

(ii) The degree defect of f with respect to W is

defW (f) = 3 degW (f) − deg disc f − 2(w0 + w1 + w2).

(iii) The index of f with respect to W is

indW (f) = deg disc f + defW (f)

= 3 degW (f) − 2(w0 + w1 + w2).

From the definition, it follows that the degree, degree
defect, and index are unchanged when we replace W by
W + k(1, 1, 1) for an integer k. Therefore, we may assume
that one of the weights is 1 and that the others are at least
1. Also, because we have

deg disc f ≤ 3 degW (f) − 2(w0 + w1 + w2)



by properties of the determinant, we see that defW (f) ≥ 0
for all W .

Now the existence and properties of a proper parametri-
sation of the surface S given by f over K(t) depend on the
index of f with respect to a suitable weight vector; in fact,
we want the index to be as small as possible. This follows
from the description of the possible cases in [4]; in partic-
ular, if indW (f) ≥ 4 for all gradings W , then no proper
parametrisation for S exists over K, and we conclude that
S is not rational over K.

By the definition, the minimal index is obtained by choos-
ing W such that the degree defect is as small as possible; in
fact, if diagonalisation is allowed, Schicho has showed that
it is possible to have the defect at most 1 [4, Lemma 1]. To
achieve the same goal for general forms, we may need to re-
duce the form f : if the matrix of f has off-diagonal entries
whose degree exceeds the degrees of some diagonal entries,
we will not be able to find a grading for which the degree
defect is at most 1.

The reduction theory of quadratic forms is classical and
has a large body of results. For a form given by a symmetric
matrix A = [aij ], the property of being reduced (in the sense
of Hermite) means that a11 has minimal size among all ele-
ments represented by the quadratic form, aii is not greater
than ajj if i < j, and aij is smaller than aii if j > i. The
meaning of the term “smaller” varies with the base ring of
the form. E.g., for forms over the integers, we use the ordi-
nary absolute value for comparing elements. For forms over
polynomial rings, we use the degree as a measure.

It turns out that the task of computing a reduced basis for
a quadratic form over the integers is NP-complete; this holds
in particular for finding the minimal element represented by
the form, or, equivalently, for finding the shortest vector in
a Z-lattice. Therefore, many approximative concepts have
been introduced, the most famous being LLL-reduction.

For forms over polynomial rings, the situation is much
easier.

Theorem 4.2 Let A be a symmetric n×n-matrix with en-
tries in K[t]. Then one can compute a matrix U with deter-
minant in K∗ such that U∗AU is reduced, using polynomi-
ally many operations in K.

Proof. In fact, an algorithm for computing a reduced ba-
sis is given in [7]; Exercise 16.12 has an explicit algorithm.
Another algorithm is given in Section 8 of [3]. The number
of base ring operations used by these algorithms is polyno-
mial in the dimension and in the maximum degree of the
components of A.

We note that the algorithms just cited operate on a the
basis vectors of a lattice such that the ordinary inner prod-
uct, evaluated on this basis, gives the Gram matrix A. In
fact, this means that A = B∗B, where B contains the basis
vectors as columns. In our situation, we only have the Gram
matrix, and it is not always possible to represent A in the
form B∗B. However, both algorithms only apply elementary
row and column operations to the basis matrix, and these
are easily translated into operations on the Gram matrix:
adding c times row i to row j corresponds to adding c times
row i to row j, and adding c times column i to column j.
Exchanging rows i and j corresponds to exchanging rows i
and j, and columns i and j.

It is also possible (in the ternary case) to obtain a re-
duced form by using the algorithms given in [2]. One needs
to apply the necessary modifications, in order to translate
the algorithms into the language of polynomials instead of
integers. This also gives a polynomial time algorithm, in
terms of operations in the base ring.

Theorem 4.3 Let A be a symmetric 3×3-matrix over K[t],
such that the form f specified by A is reduced. Then there
exists a grading W of the variables of f such that 0 ≤
defW (f) ≤ 1.

Proof. For any weight vector W , we define the weighted
degrees degW (aij) by

degW (aij) = deg aij + wi + wj .

By Definition 4.1 above, we have

degW (f) = max
i,j

{degW (aij)}.

For the case where A is diagonal, a grading satisfying the
requirements of the Theorem is given in Lemma 1 of [4].
If deg(a00), deg(a11), deg(a22) are all even, then set wi =
− deg(aii)/2. If they are all odd, set wi = −(deg(aii)−1)/2.
If one of the three, say deg(a00), is even and the others are
odd, then set w0 = − deg(a00)/2 and wi = −(deg(aii)−1)/2
for i = 1, 2. If deg(a00) is odd and the others are even,
then set w0 = −(deg(a00) + 1)/2 and wi = − deg(aii)/2 for
i = 1, 2. (If negative weights are undesirable, we can add a
multiple of (1, 1, 1) to W without changing the degree defect
and the index.)

We now have degW (aii) ∈ {−1, 0, 1} in all cases, and the
Theorem follows for diagonal A by simple verifications. One
would have liked to take wi = b− deg aii

2
c in all cases, but

this gives rise to a degree defect of 2 when exactly one of
the deg aii is even.

Now assume A is reduced, but not necessarily diagonal.
Let f be the form given by A. We recall that we have

deg aii ≤ deg ajj if i < j,

deg aij < deg aii if j > i.

From this, it follows directly that deg detA = deg a00 +
deg a11 + deg a22. We use the same weight vectors as in the
diagonal case, and therefore we are done if we show that

degW (aij) < degW (aii) if j > i. (3)

Namely, this means that both deg detA and degW (f) only
depend on the degrees of the diagonal entries, and the The-
orem follows as in the diagonal case.

We prove the claim (3). First, assume deg aii are all even.
We find

degW (aij) = deg aij −
deg aii

2
−

deg ajj

2
<

< 0 = deg ajj − 2
deg ajj

2
= degW (ajj).

The inequality follows directly from the reducedness prop-
erties given above.

Next, assume deg a00 (say) is odd and the others are even.



We give the case of a0j . We have

degW (a0j) = deg a0j −
deg a00 + 1

2
−

deg ajj

2
<

< −1 = deg a00 − 2
deg a00 + 1

2
= degW (a00),

because deg a0j is smaller than both deg a00 and deg ajj .
All other inequalities follow in the same way.

We give one example. Suppose the degrees of the aij

are given by the matrix

0

@

2 1 0
1 4 3
0 3 7

1

A; notice that coefficients

having these degrees define a reduced quadratic form. We
assign the weight vector w = (−1,−2,−4) by the rules
given above; we add (5, 5, 5) to it to get positive weights
(4, 3, 1). The matrix with components degW (aij) now be-

comes

0

@

10 8 5
8 10 7
5 7 9

1

A, which shows that degW (f) = 10. We

compute the degree defect: we have 3 degW (f)−2(w0+w1+
w2) = 14 whereas deg disc f = 2+4+7 = 13; the difference,
and thus the defect, equals 1, as desired.

This ends the description of the method of applying Schi-
cho’s algorithm to a non-diagonal form f .

5. CONCLUSION
This paper gives the principal ideas of parametrising a ra-

tionally fibred surface over a field K using only operations
on polynomials, and avoiding using rational functions over
K with nontrivial denominators. This is done by extend-
ing the essential concepts of the algorithm given in [4] to
quadratic forms over K[t] given by a not necessarily diago-
nal symmetric matrix over K[t].

The complexity of this algorithm in terms of amounts of
operations in K is polynomial in the maximal degree of the
entries of the input matrix. The complexity in terms of bit
operations remains to be investigated; this pertains to the
size of the coefficients of the occurring polynomials.

The author plans to give full details of the algorithm con-
structed here, as well as an investigation of the coefficient
growth, in a later paper.
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