
Deterministic Equation Solving over Finite Fields

Christiaan van de Woestijne
Mathematisch Instituut, Universiteit Leiden

P.O. Box 9512
2300 RA Leiden
The Netherlands

cvdwoest@math.LeidenUniv.nl

ABSTRACT
Deterministic algorithms are presented for the efficient solu-
tion of diagonal homogeneous equations in many variables
over finite fields. As auxiliary algorithms, it is shown how
to compute a field generator that is an nth power, and how
to write elements as sums of nth powers, for a given integer
n. All these algorithms take polynomial time in n and in
the logarithm of the field size, and are practical as stated.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations in finite fields; G.4 [Mathematical Software]: Al-
gorithm design and analysis; I.1.2 [Algorithms]: Algebraic
algorithms; Analysis of algorithms

General Terms
Algorithms, Design, Performance

Keywords
Deterministic algorithms, Equation solving, Finite fields

1. INTRODUCTION
Currently known algorithms for solving equations over fi-

nite fields include:

• brute force search
• algorithms for factoring polynomials (see [2, 4, 16])
• Shanks’ algorithm for taking square (and higher) roots

(see [12], [1], [4])
• methods for multivariate equations based on the above

(see Section 8)
• Schoof’s algorithm for taking square roots in prime

fields (see [10])

However, all of these are either probabilistic (barring a proof
of the Generalised Riemann Hypothesis for some) or take
more than polynomial time. It should be especially noted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’05, July 24–27, 2005, Beijing, China.
Copyright 2005 ACM 1-59593-095-705/0007 ...$5.00.

that taking square or higher roots cannot be done in deter-
ministic polynomial time if the GRH is not assumed.

In the course of my Ph.D. project with Hendrik W. Lenstra,
Jr., I have developed an algorithm for solving general diag-
onal homogeneous equations in many variables over finite
fields, that is both deterministic and runs in polynomial
time. More specifically, the equation it solves is the fol-
lowing, for a given finite field F:

n
X

i=1

aix
n
i = b (1)

with ai and b all nonzero elements of F. The algorithm works
for any characteristic and any n, although when n2 > |F| no
solution may exist. Taking b = −1, we find an algorithm
that computes a sequence of nth powers summing to zero,
with at most n + 1 terms.

The formulation of the algorithm is nontrivial and in-
volves several steps that are interesting in their own right,
all of which seem to be new. These include an extension of
Shanks’s algorithm and a method for computing an element
α of F whose nth power generates F over its prime field;
whereas the solution of the general problem makes essential
use of the ability to write elements of F as sums of nth pow-
ers. This last reduction is based on a group-theoretic proof
of part of the Chevalley-Warning Theorem by Dem′yanov
([5], also given in [7]).

The algorithm uses Õ(n3(log |F|)2) operations in F to fin-
ish, and its practicality will be evident from the description.
In Section 8 I compare its asymptotic complexity with that
of a straightforward probabilistic algorithm.

In the special subcase of finding a sequence of nth pow-
ers in F that sum to zero, the complexity drops to a mere
Õ(n2 log |F|) operations in F, and I believe that this is opti-
mal in regard to the dependence on |F|.

Applications abound especially for the case of quadratic
forms, since if char F is not 2, every quadratic form can be
brought into diagonal form. Thus it follows that one can
compute a rational point on a conic or higher-dimensional
quadric over F by a fast deterministic algorithm.

In another direction, one can use my algorithm to show
that the problem of constructing an isomorphism between
regular quadratic spaces (of dimension 2 or higher) over F

has a deterministic reduction to taking a square root of the
quotient of the discriminants.

Full proofs of all results in this note will appear in my
Ph.D. thesis “Deterministic equation solving over finite fields”
(Universiteit Leiden, 2005). A preliminary version is avail-
able for download on my homepage.

2. PRELIMINARIES
I note that all complexity bounds given in this paper are

“soft” bounds; this means that logarithmic factors have been
ignored. See [16, Section 25.7] for a precise definition.

I assume that finite fields are given by means of an irre-
ducible polynomial of the right degree over the prime field.
I will denote by F a finite field with characteristic p and
having q = pe elements. For algorithms for the basic field
operations, see [9]. I use the following facts about finite
fields.

First, the multiplicative group F
∗ is cyclic of order q −

1. Hence for a positive integer n the quotient of F
∗ by its

subgroup of nth powers has d elements, where d equals the
g.c.d. of n and the group size q − 1. It follows that every
dth power is also an nth power, and conversely, and we
might just as well replace n with d. If x and y are integers
such that xn + y(q − 1) = d, then for every a ∈ F

∗, we
have ad = (ax)n, hence conversion back and forth is easy.
Therefore I will assume throughout the paper, when dealing
with nth powers, that n divides q − 1.

Next, I give some facts about the sums of nth powers in
F.

Proposition 2.1 Let F be a finite field of q elements, let n
be a positive integer and let K be the subset of sums of nth
powers of elements of F. Then:

(i) K is a subfield of F.
(ii) If K is a proper subfield of F, then we have n2 > q.
(iii) K is equal to F if, and only if, F can be generated as a

field by adjunction of an nth power to its prime field.
(iv) Every nonzero element of K is a sum of at most n nth

powers.

I refer to [7, Section 4.2] for proofs of these statements,
which are due in essence to Tornheim [15].

Finally, I comment on the solvability of (1); I recall a few
definitions. A form is called isotropic if it has a nontrivial
zero, anisotropic if it has only the trivial zero, and universal
if it represents every nonzero element. A form is said to
represent zero if and only if it has a nontrivial zero.

Recall that if a form f represents a nonzero element b,
then it also represents all elements of the form bxn for some
x ∈ F. In this case also the coset of b modulo the nth powers
is said to be represented by the form f .

Theorem 2.2 Let F be a finite field of q elements, and let
n be a positive integer. Then:

(i) Every diagonal form of degree n over F in n + 1 vari-
ables is isotropic.

(ii) Assume every element in F is a sum of nth powers in
F. Then every diagonal form of degree n over F in n
variables with nonzero coefficients is universal.

The first statement of the Theorem is part of the Chevalley-
Warning theorem. Note that the Theorem is not at all sharp;
a straightforward application of Weil’s bounds on the num-
ber of solutions of diagonal equations over finite fields gives
much stronger results (see [17], [13]). For example, if q > n4,
then every equation of the form axn + byn = c is solvable, if
abc 6= 0.

The interest, then, of the Theorem lies in its possessing
a constructive proof. For the first statement, this proof
is due to Dem′yanov (see [5] and [7, Théorème 4.1]), and

independently to Kneser for the case n = 2 (see [8, The-
orem XI.4.4]). I was able to prove the second statement
by an extension of the same method. This statement was
first proved by Schwarz [11] on the stronger assumption that
d = (n, q − 1) < p, where p is the characteristic of F.

The proof depends on the following Proposition.

Proposition 2.3 Let F be a finite field of q elements, and
let f = a0X

n
0 + . . .+avXn

v be a diagonal form of degree n in
v + 1 variables over F. Assume that ai 6= 0 for i = 0, . . . , v.
Then:

(i) If f is not isotropic, it represents at least v+1 distinct
classes of F

∗ modulo nth powers.
(ii) If every element of F is a sum of nth powers and f is

not universal, then f represents at least v + 1 distinct
classes of F

∗ modulo nth powers.

I do not prove the Proposition here, for space considera-
tions and also because my algorithms for solving (1) provide
algorithmic proofs.

3. OUTLINE OF THE ALGORITHM
My algorithm for solving (1) is largely divided into three

steps:

1. Given a finite field F and a positive integer n, compute
α ∈ F such that αn generates F over its prime field.
Thus, writing e for the degree of F over Fp, every ele-
ment b of F can be written as

b =

e−1
X

i=0

bi(α
i)n, (2)

with bi ∈ Fp.

2. Write elements of F as a sum of nth powers with at
most n terms. Thus, interpreting the bi just given as
integers between 0 and p− 1, inclusive, we have a sum
of nth powers with ep terms; reduce this to at most n
terms by a logarithmic decay of the number of terms.
This solves (1) in the case where all coefficients are 1.

3. Writing a0 = −b and applying the second step to
−1,−a0/a1, . . . ,−a0/an, we find a system of equations
of the form
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

−a0(y
n
0,1 + . . . + yn

0,h0
) = 0

−a1(y
n
1,1 + . . . + yn

1,h1
) = a0x

n
1,0

−a2(y
n
2,1 + . . . + yn

2,h2
) = a0x

n
2,0 + a1x

n
2,1

...
...

−an(yn
n,1 + . . . + yn

n,hn
) = a0x

n
n,0 + . . . + an−1x

n
n,n−1

(3)
Here initially, the right hand sides have only xj,0 nonzero,
and we have hj ≤ n for 1 ≤ j ≤ n, and h0 ≤ n+1. We
now perform a reduction step that decreases the value
of one of the hj by at least one, until one of them be-
comes 1, whereas in the meantime the xj,i in the right
hand sides are filled in. The desired solution follows.

4. FINDING NTH POWER GENERATORS
I now give the first step of the algorithm in more detail.
Let F be a finite field and n a positive integer. Proposition

2.1 tells us that if every element of F is an nth power, then

there exists some α in F such that αn generates F over its
prime field. In this Section I show that it is possible to com-
pute such an element α efficiently (and deterministically). I
use the following auxiliary result, which could be considered
as a multiplicative version of the primitive element theorem
for separable field extensions.

Theorem 4.1 There exists a deterministic algorithm that,
given finite fields K and L, with K ⊆ L, and nonzero el-
ements α1, . . . , αt of L, computes integers x1, . . . , xt such
that

αx1

1 · · ·αxt
t generates the field K(α1, . . . , αt) over K,

and uses Õ((log q) + te) operations in L, where e = [L : K].

The main result of this Section is as follows.

Theorem 4.2 There exists a deterministic algorithm which,
given a finite field F of q elements and a positive integer n
dividing q−1, computes β ∈ F such that βn generates F over
its prime field, or correctly asserts that no such β exists, us-
ing Õ(n2 + n log q) operations in F.

The following sections outline the proofs of these results.

4.1 The compositum algorithm
Let K be a finite field with q elements, let t be a positive

integer, and for i = 1, . . . , t, let αi be algebraic over K
of degree ei. I assume that all αi are contained in some
finite overfield L of K, and hence the composite field M =
K(α1, . . . , αt) is well defined. Its degree is equal to lcm(e1,
. . . , et); I denote this degree by g. The notation M for the
composite field, and g for its degree, is kept throughout this
Section and the next.

In the course of the algorithms of this Section, we will
have many occasions to compute the degree of an element
α of a given finite field L over a subfield K. The fastest
way that I know for doing this is calling Algorithm 14.26 in
[16], which the authors call the iterated Frobenius algorithm.

This method computes degrees in Õ(e) operations in L.
The compositum algorithm is based on the following key

observation (cf. [3, Lemma 6.2]), in which φ denotes Euler’s
totient function. I do not prove this result here.

Lemma 4.3 Let L/K be a finite cyclic extension of fields
and let b1, . . . , bn be a basis for L as a K-vector space. Then
at least φ([L : K]) of the basis elements generate L over K
as a field. There exists a basis for L over K with exactly
φ([L : K]) field generators.

Remark. Actually, as lim inf
n→∞

φ(n) log log n

n
exists and is pos-

itive (by Theorem 328 in [6]), it is to be expected that at
least one in c log log e elements of a basis for L over K is a
field generator, where c is a positive absolute constant.

Algorithm. It is now easy to formulate an algorithm that
satisfies the conditions of Theorem 4.1 above: given α1, . . . , αt,
compute a basis for K(α1, . . . , αt) over K; then test all the
basis elements for field generators. This testing can be done
very efficiently as we already know the degrees of the αi. We
must find at least one generator by virtue of Lemma 4.3.

4.2 Composing the right fields
I solve the problem of the computing the desired generator

in three stages.
A prime field Fp is generated over itself by 1n; this gives

the base step.
Now suppose the prime field is small, by which I mean

p ≤ n. Then we simply enumerate n2 + 1 elements of F

and compute their nth powers. Among these powers, there
are at least n + 1 distinct elements; hence if we adjoin all
of them to Fp, we get a field with more than n elements.
The compositum algorithm given above now serves to merge
these n + 1 powers into just one nth power that generates
this subfield over Fp.

A problem arises if F does not have n2 +1 elements. This
is also the only case in which a solution to the current prob-
lem might not exist (cf. Proposition 2.1 above). However,
because n is so large, we can simply try every element of F

and still use polynomial time in n and log q.
Next, suppose that there exists some subfield K of F with

|K| > n, for which we know an nth power generator γn. Let
β be the given generator for F over Fp; we now have the
following result.

Lemma 4.4 Suppose |K| > n, and let c0, . . . , cn be distinct
elements of K. Then we have (β + ci)

n 6∈ K for at least one
i with 0 ≤ i ≤ n.

Proof. Assume the contrary. Then for all i, we have (β +

ci)
n|K| = (β+ci)

n, so (β+ci)
|K|−1 is an nth root of unity in

L, of which there are at most n. By the pigeonhole principle,
there exist i and j with 0 ≤ i < j ≤ n such that (β +

ci)
|K|−1 = (β + cj)

|K|−1, which implies that

β + ci

β + cj

∈ K.

But this is a contradiction, because β is not in K and ci 6= cj .

Corollary 4.5 With the same assumptions as in the Lemma,
the elements (β + ci)

n (for i = 0, . . . , n) together generate F

over K.

Proof. Retaining the same elements ci, apply the Lemma
successively to all maximal subfields of F containing K. It
follows that no such field contains all the elements (β +ci)

n.
Therefore these elements generate the whole field F over K.

With a second call to the compositum algorithm, we “com-
pose” γ and the elements β + ci (for i = 0, . . . , n) to find a
single element α whose nth power generates F over Fp. This
solves our problem.

5. SELECTIVE ROOT EXTRACTION
In this Section I prove the following statement, which is

needed for the second step of my main algorithm.

Theorem 5.1 There exists a deterministic algorithm which,
given a finite field F with q elements, a positive integer n,

and n + 1 nonzero elements a0, . . . , an of F, determines in-
tegers i and j and an element β ∈ F such that 0 ≤ i < j ≤ n
and

ai/aj = βn,

using Õ(n(log q) + (log q)2) operations in F.

The Theorem says actually that, given n + 1 elements in
F, we can compute an nth root of the quotient of two among
them; however, without close analysis of the elements ai one
cannot predict which two. Because of this selection feature,
the method was called Selective Root Extraction. My al-
gorithm is an extension of the Tonelli-Shanks algorithm for
taking roots in cyclic groups, which we first discuss.

5.1 The Tonelli-Shanks algorithm
The essence of the Tonelli-Shanks algorithm was already

given by Tonelli in 1891 [14] for the purpose of extracting
square roots modulo primes of the form 4k+1. It has subse-
quently been rediscovered by Shanks [12] and by Adleman,
Manders, and Miller [1] in the 1970’s, all of whom generalise
the method to finding roots of arbitrary exponent, while
Shanks also notes that the method can be applied to arbi-
trary cyclic groups. The discussion in [4, Section 1.5.1] is
limited to the square root case.

A notable property of the Tonelli-Shanks algorithm is
that, given an element whose order is large enough, it pro-
ceeds deterministically to compute roots of a. Generally, to
use it we must first guess such an element (for example, a
nonsquare if we want square roots). In the present applica-
tion, we are able to determine elements of sufficiently high
order without having to search for them.

A complexity analysis shows that, given an element of
high enough order, the Tonelli-Shanks algorithm uses O (n+
(log q)2 log n) operations in F to compute an nth root.

5.2 The Selective Root Algorithm
The Selective Root Algorithm is, in fact, the closest I

can come to a deterministic root taking algorithm in finite
fields, given the current state of knowledge. The main idea
is simple.

Let F be a finite field, with q elements, let n be a positive
integer dividing q−1, and let a0, a1, . . . , an be n+1 nonzero
elements of F. Denote by G the subgroup of F

∗ generated by
the ai. The group G is cyclic; therefore, the index [G : Gn]
is at most n. It follows that there exist i and j such that
aiG

n = ajG
n; in other words, for this particular i and j,

there exists β ∈ G with βn = ai/aj .
Now ai and aj are such that their quotient has not too

large order in G; on the other hand, the order of β is rather
large. Thus the real task of the algorithm is to look both
for elements of large and of small order in the group G.

The actual algorithm that comes out of this first factors n
into primes and works with one prime at a time. This has the
additional advantage, besides being simpler to understand,
that the number of ais to be examined is at least halved
with every processed prime.

The number of field operations performed by the algo-
rithm is quadratic in log q, and thus the algorithm has es-
sentially cubic bit complexity. I have been unable to obtain
an essentially quadratic bound, except in situations where
the orders of the arguments ai are bounded (see Section 6.2
for an example).

The complexity would improve if we could replace the
Tonelli-Shanks algorithm by a faster root taking algorithm.
Now there do exist essentially quadratic probabilistic algo-
rithms for root taking, which are mostly guises of Berlekamp’s
polynomial factorisation algorithm (see [2] or [16, Section
14.5], for example); but these do not seem to suit the present
deterministic application.

6. SUMS OF LIKE POWERS
I now detail the second step of the main algorithm.
We consider a finite field F. Given a positive integer n,

can we write any given element of F as a sum of nth powers
of elements of F? And if so, how many such powers are
needed?

This problem, known as Waring’s problem for finite fields
by analogy to its classical formulation with respect to the in-
tegers, has known active research in the 20th century. Some
elementary results are recalled in Proposition 2.1 (especially
(iv)), but these are not optimal in the cases where n is small
with respect to |F|. A survey of recent results can be found
in [18].

What concerns us here is the question of actually comput-
ing representations of given elements as sums of nth powers.
My result is the following.

Theorem 6.1 There exists a deterministic algorithm which,
given a finite field F with q elements, a positive integer n and
a nonzero element b of F, determines elements x1, . . . , xn of
F such that

b =

n
X

i=1

xn
i , (4)

or correctly asserts that b is not a sum of nth powers in F,
using Õ(n2(log q) + n(log q)2) operations in F.

As far as I know, this is the first efficient deterministic
algorithm to write finite field elements as sums of powers.

The result below treats the special case of writing 0 as a
sum of powers, in which case I have obtained an algorithm
that uses only a linear amount of field operations.

Theorem 6.2 There exists a deterministic algorithm which,
given a finite field F with q elements and a positive integer
n, determines elements x0, . . . , xn of F such that

n
X

i=0

xn
i = 0, (5)

using Õ(n2 log q) operations in F.

As already shown in the outline of the main algorithm,
representing a nonzero element a of F as a sum of nth powers
is easy, given an nth power generator of F over its prime field.
(If such a generator does not exist, then by Proposition 2.1
we must have n2 > q, and we can simply enumerate all sums
of nth powers in F to see if a is among them.) We must,
however, reduce the number of terms in the sum to at most
n, as claimed in the Theorem.

6.1 The reduction algorithm
Thus, suppose that we have a representation as follows:

a =
M
X

i=1

yn
i (6)

for some positive integer M and some nonzero elements yi

of F. If this representation is obtained from the form (2) by
simply writing all the coefficients as sums of ones, we have
M ≤ ep, where e = [F : Fp].

Now divide the sequence M terms yi into n + 1 subse-
quences, each having roughly the same number of compo-
nents. Next, form the n+1 sums S0 up to Sn, where Sj is the
sum of yn

i for all yi contained in the first j +1 subsequences.
If any of the Sj is zero, we immediately discard all the cor-

responding terms from the sum (6). If not, we apply Selec-
tive Root Extraction (see above) to the sequence (S0, . . . , Sn)
and obtain

Sl = βnSk

for some β ∈ F and some integers k and l with 0 ≤ k <
l ≤ n. Therefore, if we multiply all terms in the first k + 1
subsequences by β and discard all terms in the (k + 2)th up
to (l + 1)th sequences, the value of the sum (6) does not
change.

In both cases, the number of terms M will drop by a
factor of about n+1

n
, or more if more than one subsequence

can be discarded. The trick is applicable as long as we have
M ≥ n + 1; hence we will end up having M ≤ n, as desired,
and the number of iterations will be logarithmic in q.

I point out that attention is required for the internal rep-
resentation of a sum of the form (6). Namely, the initial
number of terms M is exponential in log p; hence at every
iteration we would need to perform an exponential amount
of exponentiations and summations. But taking advantage
of the way in which this sum arises, we see that we can do
much better: internally, we still remember the coefficients
bi from (2) and keep track of how they are split up by the
grouping into subsequences.

However, to get the complexity bound given in Theorem
6.1, one first brings the size of the coefficients bi down to
at most n at the cost of increasing their number somewhat,
with the result that we need O (log log q) iterations instead
of O (log q).

For example, one can try to write the bi as sums of nth
powers in Z by repeatedly subtracting the greatest possible
nth power. This very quickly brings the bi down to about
nn, which is sufficient.

6.2 A special case
I now treat the special case of writing 0 as a sum of nth

powers. For this it is enough to represent −1 in this way
and bringing it to the other side of the equation; however,
by a more involved approach we can improve the complexity
of the algorithm significantly.

The reason that the algorithm of the last section has es-
sentially cubic bit complexity is the use of the Tonelli-Shanks
algorithm. A more precise consideration of this algorithm
shows that the complexity is only cubic if the order of the
element whose root we compute is divisible by a high power
of some prime that also enters into n.

However, if r is a prime, dividing n, that divides the order
of a to a higher order than it divides n, then we can use this
to construct an element η whose nth power is an rth root
of unity. As is well known, if ζ is an rth root of unity, then
1 + ζ + . . . + ζr−1 = 0; thus, if r ≤ n + 1, we solve our
problem by summing powers of ηn.

In fact, we need not limit ourselves to primes dividing n;
it is enough if r divides q − 1. As an example, if n is odd,

we can use r = 2; any element of even order is enough to
apply our side exit; but we know such an element already,
namely, −1. We thus write 1n + (−1)n = 0.

Now we can modify my algorithm to take advantage of
this situation: before applying Selective Root Extraction,
we examine the element we want to take a root of, and if its
order contains enough factors of some prime below n+1, we
solve our problem by means of roots of unity. On the other
hand, if this never happens (e.g., in the case when q−1 itself
contains no high powers) we only apply the Tonelli-Shanks
algorithm to elements of bounded order. This leads to a
complexity of Õ(n2 log q) operations in F in all cases.

Unfortunately, it seems very difficult to extend this tech-
nique to the case where we have distinct coefficients.

7. THE TRAPEZIUM METHOD
I now give details for the third and final step of the main

algorithm. The following theorem is the main result of this
note.

Theorem 7.1 There exists a deterministic algorithm which,
given a finite field F with q elements, a positive integer n di-
viding q − 1, and nonzero elements a1, . . . , an and b of F,
computes elements x1, . . . , xn of F, such that

n
X

i=1

aix
n
i = b, (7)

or decides that such elements do not exist, using Õ(n3(log q)+
n2(log q)2) operations in F to complete.

The proof of this result was already embarked upon in the
outline of the algorithm, Section 3.

As in the previous two steps, we might encounter insolu-
bility of our problem only if n2 > q, by Proposition 2.1. And
again, this implies that we have enough time to enumerate
all elements represented by the form

Pn

i=1
aix

n
i over F and

see if b is among them. Therefore, we can assume henceforth
that a solution exists.

Write a0 = −b, and assume we built the system of equa-
tions (3) (repeated here for the convenience of the reader):

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

−a0(y
n
0,1 + . . . + yn

0,h0
) = 0

−a1(y
n
1,1 + . . . + yn

1,h1
) = a0x

n
1,0

−a2(y
n
2,1 + . . . + yn

2,h2
) = a0x

n
2,0 + a1x

n
2,1

...
...

−an(yn
n,1 + . . . + yn

n,hn
) = a0x

n
n,0 + . . . + an−1x

n
n,n−1

(The name “trapezium method” derives from the shape of
this system of equations.)

The first equation is formed by writing −1 as a sum of
nth powers, and then bringing −1 to the left. The others
result from writing −a0/ai as a sum of nth powers, for i =
1, . . . , n. Hence initially we have h0 ≤ n = 1 and hj ≤ n for
j = 1, . . . , n by Theorem 6.1, whereas all xj,i are zero except
the xj,0 for j = 1, . . . , n, which are all nonzero and remain
so throughout the algorithm (this is very important).

The goal is to lower the hj until one of them becomes 1;
then our problem is solved by moving the term a0x

n
j,0 to the

left and dividing through by xn
j,0.

We try to lower the hj by bringing the last term ajy
n
j,hj

to the other side. We get the sequence

`

a0y
n
0,h0

, a0x
n
1,0 + a1y

n
1,h1

, . . . ,

a0x
n
n,0 + . . . + an−1x

n
n,n−1 + anyn

n,hn

´

.

This sequence has n + 1 elements, say c0, . . . , cn. If one is
zero, we are done anyway!

Otherwise, use Selective Root Extraction to compute β ∈
F
∗ with

βn = ck/cl, i.e. ck = βncl

(assume k > l).
Replace now the kth term in the sequence by βn times

the lth term, and we can reduce hk by one!
Thus, in at most n2 steps, we will get one of the hj down

to one. The complexity bound follows directly from the ones
given above.

8. PROBABILISTIC METHODS
It is interesting to compare the running time achievements

of the algorithms given in this note with probabilistic meth-
ods for solving the same problems. Let us consider (7), as
being the most difficult to solve; assume n divides q − 1.

An obvious idea that comes to mind is the following: let
x1, . . . , xn−1 be random elements of F, test whether

n−1
X

i=1

aix
n
i

!

/b

is an nth power in F, and if it is, take its nth root by means
of a probabilistic root taking method. (It is possible that
better methods exist, but I do not know of any.)

Now for this to work, we must be sure that there are
enough solutions, otherwise we are not likely to find one by
guessing. Now to every n−1-tuple (x1, . . . , xn) corresponds
either zero, one, or n solutions to (7). A lower bound for
the number of “lucky” elements of F

n−1 is thus obtained by
dividing the number of solutions to (7) by n.

From Weil’s estimates given in [17], on page 502, we can
prove that if q > 3n2, there are at least qn−1/2 representa-
tions of b of the form (7). Thus if q > 3n2, we may expect
that every 2nth element of F

n−1 will give rise to at least one
solution of (7).

It is easy to estimate the expected running time of this
algorithm as

Õ(n2 + n log q)

operations in F; here the computation of nth roots is done
by polynomial factorisation, and takes Õ(n log q) operations
by [16, Corollary 14.16]. (One should not use the Tonelli-
Shanks algorithm.) I assume here that the generation of a
random element of F is about as complex as multiplication.

Thus, a probabilistic method will be faster than my method
except in the special case given in Section 6.2. However,
this running time rapidly deteriorates if q gets below 3n2,
whereas my bounds remain valid for q > n2.

For the case where q < n2, Weil’s lower bounds on the
number of solutions become negative and brute force, made
polynomial time with the aid of dynamical programming, is
the only remaining method.

9. REFERENCES
[1] Leonard Adleman, Kenneth Manders, and Gary

Miller. On taking roots in finite fields. In 18th Annual
Symposium on Foundations of Computer Science
(Providence, R.I., 1977), pages 175–178. IEEE
Comput. Sci., Long Beach, Calif., 1977.

[2] Eric Bach. A note on square roots in finite fields.
IEEE Trans. Inform. Theory, 36(6):1494–1498, 1990.

[3] Eric Bach, Joachim von zur Gathen, and Hendrik W.
Lenstra, Jr. Factoring polynomials over special finite
fields. Finite Fields Appl., 7(1):5–28, 2001. Dedicated
to Professor Chao Ko on the occasion of his 90th
birthday.

[4] Henri Cohen. A course in computational algebraic
number theory, volume 138 of Graduate Texts in
Mathematics. Springer-Verlag, Berlin, 1993.

[5] V. B. Dem′yanov. On representation of a zero of forms
of the form

Pm

i=1
aix

n
i . Dokl. Akad. Nauk SSSR

(N.S.), 105:203–205, 1955.

[6] G.H. Hardy and E.M. Wright. An introduction to the
theory of numbers. Oxford, at the Clarendon Press,
1965. Fourth edition, 3rd corrected printing.

[7] Jean-René Joly. Équations et variétés algébriques sur
un corps fini. Enseignement Math. (2), 19:1–117, 1973.

[8] T. Y. Lam. The algebraic theory of quadratic forms.
W. A. Benjamin, Inc., Reading, Mass., 1973.
Mathematics Lecture Note Series.

[9] H. W. Lenstra, Jr. Finding isomorphisms between
finite fields. Math. Comp., 56(193):329–347, 1991.

[10] René Schoof. Elliptic curves over finite fields and the
computation of square roots mod p. Math. Comp.,
44(170):483–494, 1985.

[11] Štefan Schwarz. On universal forms in finite fields.
Časopis Pěst. Mat. Fys., 75:45–50, 1950.

[12] Daniel Shanks. Five number-theoretic algorithms. In
Proceedings of the Second Manitoba Conference on
Numerical Mathematics (Univ. Manitoba, Winnipeg,
Man., 1972), pages 51–70. Congressus Numerantium,
No. VII, Winnipeg, Man., 1973. Utilitas Math.

[13] Charles Small. Diagonal equations over large finite
fields. Canad. J. Math., 36(2):249–262, 1984.

[14] Alberto Tonelli. Bemerkung über die Auflösung
quadratischer Congruenzen. Nachr. Göttingen,
(10):344–346, 1891. Reported in Dickson’s History,
Vol. 1, Ch. VII, item 193, p. 215.

[15] Leonard Tornheim. Sums of n-th powers in fields of
prime characteristic. Duke Math. J., 4:359–362, 1938.

[16] Joachim von zur Gathen and Jürgen Gerhard. Modern
computer algebra. Cambridge University Press,
Cambridge, second edition, 2003.

[17] André Weil. Numbers of solutions of equations in
finite fields. Bull. Amer. Math. Soc., 55:497–508, 1949.

[18] Arne Winterhof. On Waring’s problem in finite fields.
Acta Arith., 87(2):171–177, 1998.

