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Abstract. We study a redundant binary number system that was recently introduced
by Székely and Wang. For a natural number n, it is defined as follows: let k satisfy
2k ≤ 2

3
n < 2k+1; then 2k is subtracted from n, and the expansion continues recursively.

It stops, when a power of 2 is reached.
For this and more general number systems, where the factor 2/3 is replaced by a general

one, we find an explicit formula for the kth digit εk ∈ {0, 1, 2}. This allows us to compute
the cumulative frequency of a given digit, among the first N integers. Delange’s method
produces not only the leading term of order N log N , but also the fluctuating term of
order N , and the Fourier coefficients of the periodic functions that are involved.

Furthermore, we can compute the expansions from right-to-left, by translating the
ordinary binary expansion using a (finite state) transducer, provided the factor (such as
2/3) is rational. In this case, we prove that the periodic function mentioned above is
nowhere differentiable.

1. Introduction

Every (positive) integer has a unique representation in base 2 with digits 0 or 1. If one,
however, allows more digits, like {−1, 0, 1}, then one is in the area of redundant number
systems; representations are (in general) no longer unique, and one has some freedom to
choose the most convenient ones.

Reitwiesner [17] came up with the non-adjacent form, which never has adjacent nonzero
digits. This is useful in computer arithmetic. We refer to Knuth [15] for more details.

More recently, such redundant expansions became relevant in Cryptography, because a
small so-called Hamming weight results in fast computations of (high) scalar multiples nP
in Abelian groups such as the point group of an elliptic curve.

Other computer science applications include jump trees [12], mergesort [4] and Carry-
Save addition and multiplication [8] (see also [16] or [5]), just to name of few.

A recent survey about numeration systems is [9]; compare also [19].
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Recently, Székely and Wang [21, 22] invented a novel binary number system when study-
ing trees with a large number of subtrees: Let k be defined by 2k ≤ 2

3
n < 2k+1; then 2k is

subtracted from n, and the expansion continues. It stops, when a power of 2 is reached.
This leads to digits in the set {0, 1, 2}. Of course, one can generalise this definition

readily by replacing the factor 2/3 by 1/α; (it is for convenience that we use 1/α instead
of just α). Clearly, α = 1 just produces the traditional binary number system.

We study these expansions in this paper and call them α-greedy expansions. As it will
become clear in the sequel, the reasonable range for the parameter α is 1 ≤ α ≤ 3/2. This
leads to expansions with digits {0, 1, 2}, and larger digits are computed before smaller
digits, i.e., the recursive computation of the digits works from left to right.

We will first find a method to compute the digits in a non-recursive fashion, by establish-
ing a formula for the digits. In short, one has to look at n/2k+1 (mod 1). The unit interval
is split into three (unions of) intervals, except for some exceptional points. According to
which interval is hit, the outcome is one of the digits 0, 1, 2.

This leads to the natural question about the frequency of the digits. Basically, this
depends on the respective lengths of the above-mentioned intervals. Digit 1 always gets
1/2, whereas 0 and 2 get 1−α/2 and (α−1)/2, respectively. In order to get precise results
of this rough estimate, we use an idea of Delange [7]. We count the number of occurrences
of digit 1 resp. 2 in all the integers 0, 1, . . . , N−1; from this information, one can also count
the digit 0 (one must make, however, some conventions, because of possible leading zeros).
The result is the (expected) leading term λdN log2 N , but the next term NΦd(log2 N) with
a periodic function Φd(x) (continuous, period 1) is perhaps less expected. We are able
to compute the Fourier coefficients of these periodic functions; they involve the Hurwitz
ζ-function, evaluated at some special values. For rational α, the function Φd can be proved
to be nowhere differentiable.

The explicit digit formulæ lead to a convenient method to compute the expansion from
the ordinary binary expansion by translation. This translation is performed by (finite state)
transducers, which work from right to left. They are described in general for rational α,
(as they do not exist for irrational α) and explicitly drawn for several important special
cases. By inspection, one sees that the expansion of Székely and Wang (i.e., the case
α = 3/2) can be obtained as follows: If the binary expansion of n is canonically written as
10a110a2 . . . 10as , then the last group 10as is left as it stands, but every other one is replaced
by 10a −→ 01a−12 if a ≥ 1 and by 1 otherwise.

Remark 1.1. The number f(n) of representations of an integer n as
∑

j εj2
j, with εj ∈

{0, 1, 2}, was determined by Reznick [18], compare also [2]: it is given by the recursive
formula

f(2n + 1) = f(n), f(2n + 2) = f(n) + f(n + 1), f(0) = 1.

This is a shifted version of sequence A002487 in Sloane’s On-Line Encyclopedia of Integer
Sequences [20].
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2. Digit Formula

We use Iverson’s notation

[condition] =

{

1, if condition is true,

0, otherwise.

Let 1 ≤ α ≤ 3/2 be fixed throughout the paper.
We define the α-greedy-expansion ε(n) = (εj(n))j≥0 of a positive integer n as follows: If

n equals 2k for some integer k ≥ 0, we set εj(n) = [j = k] for j ≥ 0. Otherwise, we choose
the unique integer k satisfying

(1) 2k ≤ 1

α
n < 2k+1

and set

(2) εj(n) = [j = k] + εj(n − 2k)

for j ≥ 0. Since 0 < n − 2k < n, this defines εj(n) uniquely.
It is an immediate consequence of (2) that ε(n) is indeed a binary expansion of n, i.e.,

value(ε(n)) :=
∑

j≥0

εj(n)2j = n.

Note that the special case α = 1 exactly yields the standard binary expansion of n. The
case α = 3/2 has been considered by Székely and Wang [22].

Example 2.1. As an example, we show the α = 3/2-greedy-expansions of the first 10
positive integers:

1 (1)
2 (1, 0)
3 (1, 1)
4 (1, 0, 0)
5 (2, 1)

6 (1, 1, 0)
7 (1, 1, 1)
8 (1, 0, 0, 0)
9 (1, 2, 1)
10 (2, 1, 0)

Theorem 1. Let n be a positive integer and j be a nonnegative integer. We set

(3)

I0 := {0} ∪ [α − 1, 1/2) ∪ (1/2, α/2),

I1 := (0, (α − 1)/2) ∪ {1/2} ∪ [α/2, 1),

I2 := [(α − 1)/2, α − 1).

Then the following holds:

(1) If n/2j+1 < α − 1, then εj(n) = 0.
(2) If n/2j+1 ≥ α − 1 and {n/2j+1} ∈ Iη for some η ∈ {0, 1, 2}, then εj(n) = η.

Here, {x} denotes the fractional part x − bxc of a real number x.

We note that for our choice of α, we have

0 ≤ α − 1

2
≤ α − 1 ≤ 1/2 ≤ α/2 ≤ 3/4,
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Figure 1. Characteristic sets I0, I1, and I2 for α = 4/3.

and I0∪I1∪I2 = [0, 1), thus the theorem allows to compute all digits of ε(n). In particular,
the digits used are {0, 1, 2} except when α = 1, where, of course, only the digits {0, 1} are
used. The sets Iη for α = 4/3 are shown in Figure 1. Note that for α = 3/2, the interval
[α − 1, 1/2) is empty.

The following simple lemma shows that the assumption α ≤ 3/2 makes the α-expansion
behave somewhat more regularly.

Lemma 2.2. Let α ≤ 3/2 and n not be a power of 2 and 2j ≤ n
α

< 2j+1. If n − 2j is a
power of 2, then n − 2j ≤ 2j−1.

This means that the contributions to εj(n) for arbitrary n and j either entirely come
from (1) or entirely from a power of 2, but it cannot occur that contributions to the same
digit come from both cases.

Proof of Lemma 2.2. We have

n − 2j < (2α − 1)2j ≤ 2j+1.

Since n−2j has been assumed to be a power of 2 and n−2j = 2j would be a contradiction
to the assumption that n is not a power of 2, the assertion of the lemma is proved. �

Remark 2.3. For α > 3/2, Lemma 2.2 does not hold. As an example, consider the case
α = 3 and consider the expansion of 13:

22 ≤ 13/3 < 23, 13 = 22 + 9,

21 ≤ 9/3 < 22, 13 = 22 + 21 + 7,

21 ≤ 7/3 < 22, 13 = 22 + 21 + 21 + 5,

20 ≤ 5/3 < 21, 13 = 22 + 21 + 21 + 20 + 4,

22 = 4, 13 = 22 + 21 + 21 + 20 + 22.

Note that an additional summand 22 occurs at the end, although the process has already
reached summands 20.

One could still formulate digit formulæ, however, they would require more “look-ahead”
expressed in more exceptional points (such as 0 and 1/2 in Theorem 1). It seems inadequate
to deal with these technical difficulties within the frame of this paper.

One might also want to change the special treatment of powers of 2. The rule considered
here has the advantage that divisibility by powers of 2 is reflected by the corresponding
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number of trailing zeros. Just note that some kind of terminating rule is necessary in order
to stop the process anyway.

Proof of Theorem 1. If n = 2K for some integer K, the assertions of the theorem immedi-
ately follow from the definitions. Therefore, we can exclude this case in the following.

We choose the integer J such that α − 1 ≤ n/2J+1 < 2(α − 1) ≤ α. If j > J , we have
n/2j+1 < α − 1 and therefore n < 2j, which means that a summand 2j cannot possibly
occur and we have εj(n) = 0.

For real x, we define r(x) to be the unique number in the interval [α − 1, α) such that
r(x) − x is an integer. We set

J0 := [α − 1, 1/2) ∪ (1/2, α/2) ∪ {1},
J1 := {1/2} ∪ [α/2, 1) ∪ (1, (α + 1)/2),

J2 := [(α + 1)/2, α).

Then it is clear that r(x) ∈ Jη if and only if {x} ∈ Iη for η ∈ {0, 1, 2}.
Let K be maximal such that 2K divides n and set

(4) nj := n −
J

∑

k=j+1

εk(n)2k

for J ≥ j ≥ 0. We now prove the assertions of the theorem by backwards induction for
J ≥ j ≥ K. As an additional induction hypothesis, we assume that

(5) α − 1 ≤ nj

2j+1
< α,

nj

2j+1
6= 1,

which, by definition, holds for j = J . From the definition of nj and (5) we immediately
see that nj/2j+1 = r(n/2j+1).

We first consider the case that nj is not a power of 2, thus nj/2j+1 /∈ {1/2, 1}.
If nj/2j+1 ∈ J0, we get nj/α < 2j, i.e., there is no contribution to εj(n) coming from

(1). On the other hand, the next digit has to come from (1) since nj is not a power of 2,
whence εj(n) = 0 by Lemma 2.2. Furthermore, we get α − 1 ≤ nj−1/2j = nj/2j < α, i.e.,
hypothesis (5) for j − 1.

If nj/2j+1 ∈ J1, we conclude that

2j ≤ 1

α
nj < 2j+1 and

α − 1

α
2j ≤ nj − 2j

α
< 2j,

thus εj(n) = 1 and nj−1 = nj − 2j, where Lemma 2.2 has been used. From this we easily
get (5) for j − 1.

If nj/2j+1 ∈ J2, we obtain

2j ≤ 1

α
(nj − 2j) <

1

α
nj < 2j+1 and

α − 1

α
2j ≤ nj − 2 · 2j

α
<

α − 1

α
2j+1 ≤ 2j.

Using Lemma 2.2, we conclude that εj(n) = 2 and nj−1 = nj − 2 · 2j. Again, the induction
hypothesis (5) also holds for j − 1, since nj − 2 · 2j cannot equal 2j.
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Finally, we consider the case nj = 2` for some ` and we get ` ≤ j from (5) and ` = K
from (4). We see that εj(n) = · · · = εK+1(n) = 0 as well as nj = · · · = nK and nj/2j+1,
. . . , nK+1/2K+2 ∈ J0. Next we obtain εK(n) = 1, nK/2K+1 = 1/2 ∈ J1, and nj′ = 0
and therefore εj′(n) = 0 for j ′ < K. Since n/2j′+1 is an integer for j ′ < K, we also get
r(n/2j′+1) = 1 ∈ J0 for those j ′. �

Remark 2.4. Values α < 1 lead to negative values n−2k. The definition has to be modified
in such a way that for negative n, negative digits are allowed. In order to obtain an analogue
of Lemma 2.2, one has to require that α ≥ 1/2. The case of α = 2/3 is known as the Non-
Adjacent-Form (cf. Reitwiesner [17] and Heuberger [13]). Digit formulæ can be derived
for α ∈ [1/2, 2/3]. For α not in this range, this is not necessarily the case. As an example,
consider α = 3/4, xm = (22m+2 − 1)/3 and ym = xm + 22m+1 whose 3/4-expansion differs
in the third digit from the right. Thus in this case, there cannot be a digit formula only
involving fractional parts of n/2k+` for some constant `.

3. Counting Digits

The aim of this section is to compute the frequency of the digits in α-greedy-expansions.
To this aim, we use Delange’s [7] method and the digit formulæ given in Theorem 1. The
case of the standard binary expansion (α = 1) has been dealt with in Delange [7] and is
excluded here for technical reasons.

Theorem 2. Let 1 < α ≤ 3/2, N be a positive integer and d ∈ {1, 2}. Then there is a
continuous 1-periodic function Φd such that the number Sd(N) of occurrences of the digit
d in the α-greedy-expansions of the positive integers less than N can be calculated as

Sd(N) :=

N−1
∑

n=1

∑

k≥0

[εk(n) = d] = λdN log2 N + NΦd(log2 N) + O(log N),

where

λ1 =
1

2
, λ2 =

α − 1

2
.

The periodic function Φd has a uniformly convergent Fourier series, the Fourier coeffi-

cients c
(d)
n =

∫ 1

0
Φd(x) exp(−2πinx) dx, n ∈ Z, are given by

c
(1)
0 =

3

4
− 1

2 log 2
+ log2 Γ

(α

2

)

− log2 Γ
(α − 1

2

)

− log2(α − 1),

c(1)
n =

ζ
(

χn, α
2

)

− ζ
(

χn, α−1
2

)

+ (α − 1)−χn

(1 + χn)χn log 2
, n 6= 0,

c
(2)
0 = −α + 3

4
− α − 1

2 log 2
+

1

2
log2 π − log2 Γ

(α

2

)

+
∑

j≥1

jηj2
−j−1,

c(2)
n =

ζ
(

χn, α−1
2

)

− ζ(χn, α − 1)

(1 + χn)χn log 2
, n 6= 0,

(6)
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Figure 2. The periodic function Φ1(log2 N) (continuous gray line) and
(S1(N) − 1

2
N log2 N)/N (black dots) for 26 ≤ N ≤ 213 and α = 3/2. The

N -axis is scaled logarithmically.

where 2−α =
∑

j≥1 ηj2
−j is the standard binary expansion of 2−α (in case of ambiguity,

choose the expansion with finitely many digits 1), ζ(s, a) denotes the Hurwitz Zeta function,
defined for Re s > 1 by ζ(s, a) :=

∑

k≥0(k + a)−s, and χn = 2πin/ log 2 for n ∈ Z.
If α is rational, then the functions Φd, d ∈ {1, 2}, are nowhere differentiable.

As usual, the digit 0 is not dealt with explicitly in order to avoid dealing with leading
zeros.

The proof that Φd is nowhere differentiable for rational α is postponed to Section 5 since
it depends on the construction of a finite transducer automaton in Section 4.

For irrational α the question whether Φd is differentiable (at least for some x) remains
open.

In Figure 2, the periodic function and the values approximated by it are displayed. As
predicted, for growing N , the fit becomes better and better. The periodic function has
been plotted using about 4000 Fourier coefficients.

The following lemma summarises those parts of the computation which are quite inde-
pendent of our digit system.

Lemma 3.1. Let H ⊆ [0, 1) be a measurable set, s < 1 be a constant such that

Mk := #

{

a ∈ Z :

[

a

2k
,
a + 1

2k

)

∩ ∂H 6= ∅
}

= O(2sk),
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where ∂H is the boundary of H, and c be a nonnegative integer. Then

N−1
∑

n=0

blog2 Nc+c
∑

k=0

[{ n

2k+1

}

∈ H
]

= λ(H)N log2 N + NΦH,c(log2 N) + O(N s + log N),

where λ(H) is the Lebesgue measure of H and ΦH,c is a 1-periodic function, continuous in

the open interval (0, 1). Its Fourier coefficients cn =
∫ 1

0
ΦH,c(x) exp(−2πinx) dx, n ∈ Z,

are given by

cn =

(

− 1

2
λ(H) +

∑

k≥0

βk

)

[n = 0] +
λ(H)

χn log 2
[n 6= 0]

+
1

(1 + χn) log 2

(

−λ(H) + 2c+1λ(H ∩ [0, 2−c−1]) +

∫

H∩[2−c−1,1]

y−(1+χn) dy

)

+
1

(1 + χn) log 2

∑

k≥1

∫ 1

0

(y + k)−(1+χn) ([y ∈ H] − λ(H)) dy,

(7)

where

βk =

∫ 1

0

([

⌊

2k+1y
⌋

2k+1
∈ H

]

− [y ∈ H]

)

dy, k ≥ 0.

Proof of Lemma 3.1. The first part follows along the lines of the proofs of Theorem 17 in
[14] and Theorem 5 in [10]. We get

ΦH,c(x) = λ(H)(1 + c − x) + ΨH,c(x) +
∑

k≥0

βk,

where

ΨH,c(x) =
∑

k≥0

2−(x+k−c−1)

∫ 2x+k−c−1

0

([{y} ∈ H] − λ(H)) dy

for x ∈ [0, 1) and consider ΦH,c and ΨH,c as 1-periodic functions. The error term is bounded
by O(log N) if s = 0.

We want to compute the Fourier coefficients cn, n ∈ Z, of ΦH,c(x). Denoting the Fourier
coefficients of ΨH,c by dn, n ∈ Z, we easily get

(8) cn =

(

(

c +
1

2

)

λ(H) +
∑

k≥0

βk

)

[n = 0] +
λ(H)

χn log 2
[n 6= 0] + dn.

We first rewrite ΨH,c(x) as

ΨH,c(x) =
∑

`≥−c−1

2−(x+`)

∫ 2x+`

0

([{y} ∈ H] − λ(H)) dy

and note that the lower bound of the integral can be replaced by any integer less than
2x+` without changing its value. Thus the integral is bounded by 2 and the sum converges
uniformly for x ∈ [0, 1].
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By definition and uniform convergence, we have

dn =

∫ 1

0

ΨH,c(x)2−χnx dx =
∑

`≥−c−1

∫ 1

0

2−(x+`)−χnx

∫ 2x+`

0

([{y} ∈ H] − λ(H)) dydx.

Replacing x + ` by x, collecting the contributions of x < 0 and splitting the contributions
for x > 0 into suitable parts for the fractional part yields

dn =
∑

`≥−c−1

∫ `+1

`

2−(1+χn)x

∫ 2x

0

([{y} ∈ H] − λ(H)) dydx

=

∫ 0

−c−1

2−(1+χn)x

∫ 2x

0

([y ∈ H] − λ(H)) dydx

+
∑

k≥1

∫ log2(k+1)

log2 k

2−(1+χn)x

∫ 2x

k

([{y} ∈ H] − λ(H)) dydx.

We calculate the easy part of the first integral and swap the order of integration in the
remaining integrals to obtain

dn = − λ(H)

∫ 0

−c−1

2−(1+χn)x

∫ 2x

0

dydx

+

∫ 2−c−1

0

∫ 0

−c−1

[y ∈ H] 2−(1+χn)x dxdy +

∫ 1

2−c−1

∫ 0

log2 y

[y ∈ H] 2−(1+χn)x dxdy

+
∑

k≥1

∫ k+1

k

∫ log2(k+1)

log2 y

2−(1+χn)x ([{y} ∈ H] − λ(H)) dxdy.

We perform all possible integrations, note that
∫ k+1

k
([y ∈ H] − λ(H)) dy vanishes, and

cancel out some terms and obtain

dn = − [n = 0]λ(H)(c + 1)

+
1

(1 + χn) log 2

(

−λ(H) + 2c+1λ(H ∩ [0, 2−c−1]) +

∫

H∩[2−c−1,1]

y−(1+χn) dy

)

+
1

(1 + χn) log 2

∑

k≥1

∫ 1

0

(y + k)−(1+χn) ([y ∈ H] − λ(H)) dy.

Together with (8), we get (7). �

Proof of Theorem 21. We first consider the case d = 2. For positive n, there is exactly one
k such that

n

2k+1
∈ I2

1The proof that Φd is nowhere differentiable for rational α is postponed to Section 5.
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(no fractional part!) and by Theorem 1, we do not have εk(n) = 2 for this k, since
n/2k+1 < α − 1. We choose c := b− log2(α − 1)c + 1, set K := blog2 Nc + c implying that
n/2k+1 < (α − 1)/2 for all k > K. Thus we get

N−1
∑

n=1

∑

k≥0

[εk(n) = 2] =
N−1
∑

n=1

K
∑

k=0

[εk(n) = 2] =
N−1
∑

n=0

K
∑

k=0

[{ n

2k+1

}

∈ I2

]

− (N − 1)

= λ(I2)N log2 N + N
(

ΦI2,c(log2 N) − 1
)

+ O(log2 N)

by Lemma 3.1 for H = I2, since Mk ≤ 2. We note that λ(I2) = (α− 1)/2 and set Φ2(x) =
ΦI2,K−blog2 Nc(x)− 1. We note that by definition, we have Sd(2

L)− Sd(2
L − 1) = O(L) and

therefore Φ2(0) − Φ2(1 − log2(1 − 2−L)) = O(L2−L). Thus Φ2(1) = Φ2(0) by continuity.
Hence Φ2 is a 1-periodic continuous function.

We now compute the Fourier coefficients using (7). Note that 2−c−1 < (α − 1)/2.
Therefore

c(2)
n = [n = 0]

(

− α − 1

4
− 1 +

∑

k≥0

βk

)

+ [n 6= 0]
α − 1

2χn log 2

+
1

(1 + χn) log 2

(

−α − 1

2
+ gn(α − 1) − gn

(α − 1

2

)

)

+
1

(1 + χn) log 2

∑

k≥1

(

gn(k + α − 1) − gn

(

k +
α − 1

2

)

− α − 1

2
(gn(k + 1) − gn(k))

)

,

where

gn(y) =

{

log y, if n = 0,

−y−χn

χn
, if n 6= 0.

We obtain

c
(2)
0 = −α − 1

2

(

1

2
+

1

log 2

)

− 1 + log2 Γ
(α − 1

2

)

− log2 Γ(α − 1) +
∑

k≥0

βk

and

c(2)
n =

1

(1 + χn)χn log 2

(

ζ
(

χn,
α − 1

2

)

− ζ(χn, α − 1)

)

for n 6= 0. Note that ζ(χn, a) = O(
√

n ) (cf. Whittaker and Watson [24, § 13.51]), thus the
Fourier series is uniformly convergent. Since Φ2 is continuous, the Fourier series converges
pointwise to Φ2 by Fejér’s theorem.
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We still have to compute
∑

βk. For k ≥ 0, we have

βk = −α − 1

2
+

∑

0≤a<2k+1

[

(α − 1)2k ≤ a < (α − 1)2k+1
]

2k+1

=

⌈

(α − 1)2k+1
⌉

2k+1
−

⌈

(α − 1)2k
⌉

2k+1
− α − 1

2
=

⌊

(1 − α)2k
⌋

2k+1
−

⌊

(1 − α)2k+1
⌋

2k+1
− α − 1

2

= −ηk+12
−k−2 +

∑

j≥k+2

ηj2
−j−1.

Thus
∑

k≥0

βk = −2 − α

2
+

∞
∑

j=2

j−2
∑

k=0

ηj2
−j−1 = −2 − α

2
+

∑

j≥1

(j − 1)ηj2
−j−1.

Using the identity Γ(2s)/(Γ(s)Γ(s + 1/2)) = 22s−1/
√

π we get (6) in this case.
Next, we consider the case d = 1. Set c := b− log2(α − 1)c and K := blog2 Nc+ c which

implies that for k > K and n < N , n/2k+1 < (α − 1) and therefore εk(n) = 0.
This yields

N−1
∑

n=1

∑

k≥0

[εk(n) = 1] =

N−1
∑

n=0

K
∑

k=0

[{ n

2k+1

}

∈ I1

]

−
N−1
∑

n=1

K
∑

k=0

[

n

2k+1
<

α − 1

2

]

.

Since (α − 1)2k ≤ N for k ≤ K, we have

N−1
∑

n=1

K
∑

k=0

[

n

2k+1
<

α − 1

2

]

=

K
∑

k=0

(⌊

(α − 1)2k
⌋

+ O(1)
)

= 2K+1(α − 1) + O(K)

= N21−{log2 N}+b− log2(α−1)c(α − 1) + O(logN).

We apply Lemma 3.1 and use the same continuity argument as above.
For the Fourier coefficients, we note that (α − 1)/2 ≤ 2−c−1 < α − 1. Taking the

additional term −21+c−x(α − 1) into account, Lemma 3.1 yields

c(1)
n =

(

−1

4
+

∑

k≥0

βk

)

[n = 0] +
[n 6= 0]

2χn log 2
− (α − 1)2c

(1 + χn) log 2

+
1

(1 + χn) log 2

(

−1

2
+ 2c(α − 1) + gn(1) − gn

(α

2

)

)

+
1

(1 + χn) log 2

∑

k≥1

(

gn

(

k +
α − 1

2

)

− gn

(

k +
α

2

)

+
gn(k + 1) − gn(k)

2

)

.

This results in

c
(1)
0 =

3

4
− 1

2 log 2
+ log2 Γ

(α

2

)

− log2 Γ
(α − 1

2

)

− log2(α − 1) +
∑

k≥0

βk
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and

c(1)
n =

ζ
(

χn, α
2

)

− ζ
(

χn, α−1
2

)

+ (α − 1)−χn

(1 + χn)χn log 2

for n 6= 0. The Fourier series converges pointwise by the same observation as above.
Finally, we compute

∑

βk in this case, too. We obtain

βk =

⌈

(α − 1)2k
⌉

+ 2k −
⌈

α2k
⌉

2k+1
= 0.

�

Remark 3.2. The function that maps a number x written in binary as (0.ε1ε2 . . . )2 to
∑

j≥1 jεj/2j, which appears in the computation of the Fourier coefficient c
(2)
0 , is not un-

common in the literature and appears at least in [1, 3, 4, 6].

4. Right-To-Left Transducer

The α-greedy expansion has been defined from left to right, i.e., from the most significant
digit to the least significant digit. Of course, the digit formulæ in Theorem 1 also allows us
to compute the digits from right to left. The aim of this section is to investigate whether
the digits can be computed from right to left from the standard binary expansion by using
a transducer automaton.

As can be seen from the additional condition n/2j+1 ≥ α−1 in Theorem 1, leading zeros
are not quite natural in the α-greedy expansions. Therefore, we do not allow leading zeros
in the standard binary expansions of the input to our transducers.

We prove the following theorem.

Theorem 3. The following two assertions are equivalent.

(1) There is a finite deterministic transducer automaton rewriting the standard binary
expansion (1, bL−1, . . . , b0) of positive integers to the α-greedy expansion of the same
integer from right to left.

(2) The number α is rational.

In this case there exists such a transducer automaton with at most denominator(α) + 2
states.

For denominator(α) ≤ 6, these transducer automata are shown in Figures 3–8. In some
cases, these transducers could be simplified by merging equivalent states (For α = 5/4, the
intervals [1/2, 3/4) and [3/4, 1) could be merged; similarly for α = 7/6 and the interval
[2/3, 1)).

Proof of Theorem 3. We first consider the case that α = p/q is a rational number. If q is
even, we consider the intervals

J0 := {0}, J1 :=

(

0,
1

q

)

, J2 :=

[

1

q
,
2

q

)

, . . . , Jq :=

[

q − 1

q
, 1

)

,
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{0} [ 1
2
, 1)

(0, 1

2
)

0|0 1|1 1|1
0|2

1|0

0|1

Figure 3. Right-To-Left-Transducer for α = 3/2.

{0} [ 1
2
, 2

3
)

(0, 1

3
)

[ 2
3
, 1)

[ 1
3
, 1

2
)

0|0 1|1

0|2

1|1

1|0

0|1

1|1

0|0

0|2

1|1

Figure 4. Right-To-Left-Transducer for α = 4/3.

{0} [ 1
2
, 1)

[ 1
4
, 1

2
)(0, 1

4
)

0|0 1|1 1|1

0|0
1|1

0|2

1|0

0|1

Figure 5. Right-To-Left-Transducer for α = 5/4.

where J1 is open and J2, . . . , Jq are closed on the left and open on the right. If q is odd,
we divide the middle interval and set

J0 := {0}, J1 :=

(

0,
1

q

)

, J2 :=

[

1

q
,
2

q

)

, . . . , J q−1

2

:=

[

q − 3

2q
,
q − 1

2q

)

, J q+1

2

:=

[

q − 1

2q
,
1

2

)

,

J q+3

2

:=

[

1

2
,
q + 1

2q

)

, J q+5

2

:=

[

q + 1

2q
,
q + 3

2q

)

, . . . , Jq+1 :=

[

q − 1

q
, 1

)

.
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{0} [ 1
2
, 3

5
)

[ 1
5
, 2

5
)

[ 3
5
, 4

5
)

(0, 1

5
)

[ 4
5
, 1)

[ 2
5
, 1

2
)

0|0 1|1

0|0

1|1

1|1

0|2

0|0

1|1

1|0

0|1

1|1

0|0

0|0

1|1
Figure 6. Right-To-Left-Transducer for α = 6/5.

{0} [ 1
2
, 3

5
)

[ 1
5
, 2

5
)

[ 3
5
, 4

5
)

(0, 1

5
)

[ 4
5
, 1)

[ 2
5
, 1

2
)

0|0 1|1

0|2

1|1

1|0

0|1

0|2

1|1

1|0

0|1

1|1

0|0

0|2

1|1

Figure 7. Right-To-Left-Transducer for α = 7/5.

{0} [ 1
2
, 2

3
)

[ 1
6
, 1

3
)

[ 2
3
, 1)

(0, 1

6
) [ 1

3
, 1

2
)

0|0 1|1

0|0

1|1

1|1

0|2

1|1

0|01|0

0|1

0|0

1|1

Figure 8. Right-To-Left-Transducer for α = 7/6.

We consider the functions

(9) fd(x) :=
d

2
+

x

2
, d = 0, 1,

and set

V := {J0, . . . , Jq+[q is odd]}.
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It is easily verified that for each Jj ∈ V and d ∈ {0, 1} there is a unique Jk ∈ V and a
unique o ∈ {0, 1, 2} such that fd(Jj) ⊆ Jk ∩ Io, where the sets Io have been defined in
Theorem 1.

We define the transducer T by its set of states V and set of transitions

(10) E := {Jj
d|o−→ Jk : Jj, Jk ∈ V, d ∈ {0, 1}, o ∈ {0, 1, 2} such that fd(Jj) ⊆ Jk ∩ Io}.

The initial state is J0 = {0}, the terminal states are the states Jk with Jk ⊆ [1/2, 1).
We claim that T is exactly the transducer we are looking for. Let n be a positive integer

with standard binary expansion (bL, . . . , b0) satisfying bL = 1. Assume that
{ n

2`

}

=
value(b`−1, . . . , b0)

2`
∈ Jj

for some 0 ≤ ` < L and some state Jj ∈ V . Note that for ` = 0, this state Jj is the initial
state J0. Now,

{ n

2`+1

}

=
value(b`, b`−1, . . . , b0)

2`+1
= fb`

(

value(b`−1, . . . , b0)

2`

)

∈ Jk ∩ Io

for the unique pair (Jk, o) ∈ V × {0, 1, 2} such that Jj
d|o−→ Jk is a transition in T . By

Theorem 1, the digit o is correct. By induction, we see that T is correct.
This completes the proof for rational α.
Conversely, we now assume that α is irrational and that there is an appropriate trans-

ducer T with set of vertices V = {1, . . . , n} and set of transitions E. Our strategy is to
count the number S2(2

L) of digits 2 in the expansions of the integers {1, . . . , 2L−1} using
the transducer and compare this with Theorem 2 to obtain a contradiction.

We consider the labelled transition matrix A(Y ) with entries

ajk =
∑

j
d|o−→k∈E

Y [o=2], 1 ≤ j, k ≤ n,

i.e., transitions with output label 2 are labelled with Y , all others contribute summands
1. Set mK,L to be the number of positive integers in the set {2L−1, . . . , 2L − 1} with the
property that its α-expansion has exactly K occurrences of the digit 2. We study the
generating function

G(Y, Z) :=
∑

K≥0
L≥1

mK,LY KZL = vt(I − AZ)−1w,

where v = (1, 0, . . . , 0)t and w is the vector with entries [j is a terminal state], j = 1, . . . , n.
Obviously, G(Y, Z) is a rational function in Y and Z over Q. Then the quantity S2(2

L) −
S2(2

L−1) equals the coefficient of ZL in GY (1, Z), where GY denotes differentiation with
respect to Y . It is clear that GY (1, Z) is a rational function in Y over Q. Since

S2(2
L) − S2(2

L−1) =
α − 1

4
L2L + O(2L)
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by Theorem 2, we see that 1/2 is a double pole of GY (1, Z). We conclude that

α − 1

4
= lim

Z→1/2
GY (1, Z)(2Z − 1)2 ∈ Q,

which is a contradiction to the irrationality of α. �

Remark 4.1. From the transducers that we have constructed for rational α, it can be
concluded that the set of admissible representations, i.e., those words over the alphabet
{0, 1, 2}, which occur as α-greedy representation for some natural number n, is a regular
set. By the proof of Theorem 3, rationality of α is also necessary. In the simplest cases,
the regular sets can be described by rather simple regular expressions. Here are a few
examples:

α = 3/2 : (1 + 01∗2)∗10∗

α = 5/4 : (1 + 10 + 01∗20)∗10∗

α = 4/3 : (ε + (10 + 1)∗1)(01∗20(10 + 1)∗1 + 01∗2)∗10∗

For other values of α, such regular expressions would become much more involved, but
the transducer contains the relevant information, anyway. Similarly, transformation rules
(as mentioned in the introduction) can be given, but they also become more involved for
α 6= 3/2.

5. Non-Differentiability of Φd for rational α

This section is devoted to the proof of the following proposition whose assertion has
already been announced in Theorem 2:

Proposition 5.1. For rational 1 < α ≤ 3/2, the continuous periodic functions Φd, d ∈
{1, 2}, introduced in Theorem 2 are nowhere differentiable.

As remarked after Theorem 2, the question for irrational α is completely open. For
α = 1, we obviously have Φ2 = 0, but Φ1 is still nowhere differentiable by Delange’s
result [7].

Our proof here uses the method presented by Grabner and Thuswaldner [11] which is a
refinement of Tenenbaum’s approach [23].

Throughout this section, we assume that α is rational and written as α = p/q > 1 for
coprime p and q. Choose r to be the least integer such that 1/2r < 1/q.

We consider the transducer T defined in the proof of Theorem 3 and make the following
simple observations.

Lemma 5.2. (1) The transducer T always contains the transitions

J0
0|0−→ J0, J0

1|1−→ Jh,

J1
0|1−→ J1, J1

1|0−→ Jh,
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where

Jh =

[

1

2
,
1

2
+

1 + [q even]

2q

)

.

(2) For each non-initial state Jj ∈ V , j > 0, there is a path of length ` with ` ≤ r from
Jj to J1 whose input label is a string of ` zeros and whose output label consists of
(from right to left) a (possibly empty) string of zeros, followed by exactly one digit
2, followed by a (possibly empty) string of ones.

Proof. (1) This is a straightforward consequence of (10) and (3).
(2) Since f r

0 ((0, 1)) ⊆ (0, 2−r) ⊆ (0, 1/q) = J1, where f r
0 denotes the rth iterate of the

function f0 defined in (9), the path with input label 0(r) (r repetitions of the digit

0) leads from Jj to J1. Final edges J1
0|1−→ J1 can be omitted. The assertion on the

output label follows from (10) and (3).
�

From these properties of the transducer, we derive the following properties of the function
sd defined for d ∈ {1, 2} by

sd(n) :=
∑

k≥0

[εk(n) = d] .

Lemma 5.3. Let d ∈ {1, 2}, ` be a positive integer, 0 ≤ y < 2` and x > 0. Then

(11) sd(2
`+rx + y) = sd(x) + sd(y) + [y 6= 0] gd(x, y, ` + r),

where

g1(x, y, m) = v2(x) − 1 +
∑

0≤j<m

[

y < (α − 1)2j
]

,(12)

g2(x, y, m) = 1

and v2(x) denotes the maximum integer t such that 2t divides x.

Proof. For y = 0, the assertion is a direct consequence of Lemma 5.2, Item 1.
For y > 0 and d = 2, the binary expansion of 2`+rx + y consists (from right to left)

of the binary expansion of y, padded with zeros to length `, a string of r zeros and the
binary expansion of x. Consequently, the corresponding path in T decomposes into the
path corresponding to y, the path described in Item 2 of Lemma 5.2, some transitions

J1
0|1−→ J1, the transition J1

1|0−→ Jh, and the remainder of the path corresponding to x after

removal of some transitions J0
0|0−→ J0 and exactly one transition J0

1|1−→ Jh. The output
label corresponds to (11).

For y > 0 and d = 1, this argument has to be refined. First we have to quantify the
number of output digits 1 in the path described in Item 2 of Lemma 5.2. By Theorem 1, we
have εj(y) = 0 and εj(2

`+rx + y) = 1 for some j < ` + r if and only if y/2j+1 < (α − 1)/2.

Exactly one transition J0
1|1−→ Jh is replaced by a transition J1

1|0−→ Jh, thus reducing the
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number of ones by 1, whereas v2(x) transitions J0
0|0−→ J0 are replaced by the same number

of transitions J1
0|1−→ J1. Summing up, we obtain (12).

�

Proof of Proposition 5.1. Assume that Φd is differentiable in some x ∈ [0, 1). We write the
standard binary expansion of 2x (in case of ambiguity, we choose the infinite expansion) as

2x =
∑

j≥0 ξj2
−j. For a positive integer k, we define the quantity xk by 2xk =

∑k
j=0 ξj2

−j.
We remark that

0 < x − xk = O(2−k).

We define L(k) := 2 blog2 kc + r + 2, Mk := 2k+xk and Nk := 2L(k)Mk = 2L(k)+k+xk. By
construction, Mk is an integer. Note that

k2 < 2L(k)−r and
k2

Nk

= Θ(2−k).

The quantity yk is defined by Nk + k2 = 2L(k)+k+yk . We have

yk − xk =
1

log 2

k2

Nk

(

1 + O

(

k2

Nk

))

.

We now consider
∑

Nk≤n<Nk+k2

sd(n) =
∑

0≤y<k2

sd(2
L(k)Mk + y).

Applying (11) yields
∑

Nk≤n<Nk+k2

sd(n) = k2sd(Mk) + Gd(Mk, k
2, L(k)) +

∑

0≤y<k2

sd(y),

where Gd(Mk, k
2, L(k)) =

∑

1≤y<k2 gd(Mk, y, L(k)). Applying Theorem 2 on the last sum,
we obtain

∑

Nk≤n<Nk+k2

sd(n) = k2sd(Mk) + Gd(Mk, k
2, L(k)) + λdk

2 log2 k2 + k2Φd(log2 k2) + O(log k).

We first consider the case d = 2, where G2(Mk, k
2, L(k)) = k2 − 1. Applying Theorem 2

twice on the left hand side, dividing by k2 and rearranging terms yields

(13) s2(Mk) = λ2

(

k + L(k) + x − log2 k2
)

−Φ2(2 log2 k)+
λ2

log 2
−1+Φ2(x)+

Φ′
2(x)

log 2
+o(1).

Taking the difference of two subsequent terms yields

s2(Nk+1) − s2(Nk) = λ2 (1 + L(k + 1) − L(k)) + o(1).

Since (1 + L(k + 1)− L(k)) ∈ {1, 2}, λ2 /∈ Z, 2λ2 /∈ Z, and the left hand side is an integer,
this is a contradiction for sufficiently large k.
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We now turn to the case d = 1. A straightforward calculation shows that

1

k2
G1(Mk, k

2, L(k)) = v2(Mk) − 1 + O

(

1

k

)

+
1

k2

∑

0≤j<L(k)

∑

1≤y<k2

[

y < (α − 1)2j
]

= v2(Mk) − 2 + 21−{log2
k2

α−1
} + L(k) −

⌊

log2

k2

α − 1

⌋

+ o(1).

The analogue of (13) is

s1(Mk) + v2(Mk) + L(k) −
⌊

log2

k2

α − 1

⌋

= λ1

(

k + L(k) + x − log2 k2
)

−21−{log2
k2

α−1
}−Φ1(2 log2 k)+

λ2

log 2
+2+Φ1(x)+

Φ′
1(x)

log 2
+o(1).

For every k such that L(k) = L(k + 1) and blog2 k2/(α − 1)c = blog2(k + 1)2/(α − 1)c
(obviously, there are infinitely many such k), subtraction of two subsequent terms yields

s1(Mk+1) + v2(Mk+1) − s1(Mk) − v2(Mk) = λ1 + o(1) =
1

2
+ o(1).

This is impossible since the left hand side is an integer. �
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