
ANALYSIS OF ALTERNATIVE DIGIT SETS FOR NONADJACENT

REPRESENTATIONS

CLEMENS HEUBERGER‡ AND HELMUT PRODINGER∗

Abstract. It is known that every positive integer n can be represented as a finite sum
of the form

∑
i
ai2

i, where ai ∈ {0, 1,−1} and no two consecutive ai’s are non-zero
(“nonadjacent form”, NAF). Recently, Muir and Stinson [12, 13] investigated other digit
sets of the form {0, 1, x}, such that each integer has a nonadjacent representation (such a
number x is called admissible). The present paper continues this line of research.

The topics covered include transducers that translate the standard binary representa-
tion into such a NAF and a careful topological study of the (exceptional) set (which is of
fractal nature) of those numbers where no finite look-ahead is sufficient to construct the
NAF from left-to-right, counting the number of digits 1 (resp. x) in a (random) represen-
tation, and the non-optimality of the representations if x is different from 3 or −1.

1. Introduction

Redundant number systems have been studied by many people, and for various reasons.
Probably the most famous one uses the base 2, but instead of the traditional digits 0, 1, it
allows a third digit −1. One can make this system unique by superimposing a condition:
no two adjacent digits different from zero are permitted. This non-adjacent-form (“NAF”)
goes back (at least) to Reitwiesner [15]. For pointers to the earlier literature we refer the
reader to [10] and [7].

Recently, Muir and Stinson [12, 13] asked for other sets of digits, in particular of the
form {0, 1, x}, such that every (positive) integer has a unique representation using these
digits, base 2, and obeying again the condition that two adjacent digits cannot both be
different from zero.

The present paper analyzes their number systems with respect to frequencies of digits,
description of characteristic sets and similar questions. Our main focus is to provide results
for general x as much as possible; we give explicit results as well as algorithms to compute
some characteristic quantities for specific x.

We summarize here what follows in the later sections.
In order to describe the digits x that work, we define a suitable graph. The answer

depends on whether each node can be reached from the starting node. We propose
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an O(|x|)-time algorithm for this decision. The list of admissible numbers x starts like
3,−1,−5,−13, . . . (they must all be ≡ 3 mod 4).

We then define transducers (finite automata with output) that translate the standard
binary representation into a NAF using digits {0, 1, x} by reading the input word from
right to left (thus starting with the least significant digit). Such a transducer has at most
|x| + 4 states. It can be constructed even for such x’s that don’t lead to NAFs; in such
cases, not every number has a representation, and one can “see” from the transducer when
this happens. (For the standard NAF, such a transducer is of course well known.)

One of the advantages of the (standard) NAF, especially for applications in cryptogra-
phy, is, that many digits are zero “on average.” To be more precise, if one considers all
admissible words of length N , with digits (letters) from the set {0, 1,−1}, then a random
word has on average N

6
digits ‘1’ resp. ‘−1’ and 2N

3
zeros. Interestingly, these frequencies

persist even in the general case, with error terms depending on the extra digit x; in prin-
ciple (for any particular x), they can be computed. The variance follows a similar pattern,
with the constant 1

6
being replaced by 11

108
. From this one can conclude that the underlying

distribution is Gaussian.
For various reasons (on-line computations!) it would be nice to generate the NAF when

reading the digits of the binary expansion from left-to-right. It is known for the standard
case x = −1 that this is not possible, but there exist equivalent representations (with
respect to the large number of zeros, i.e., small “Hamming weight”). There are always
situations where a finite look-ahead will not be sufficient to decide which digit should be
taken. We scale this exceptional set B down to the unit interval and study it as a function
of the length of the look-ahead. While this set is just { 1

6
, 2

6
, 4

6
, 5

6
} in the standard instance,

we enter the realm of fractals for x = −5,−13, . . . . The (Lebesgue-) measure of B is zero,
but its Hausdorff dimension is positive and strictly less than 1. A similar situation occurred
in the study of joint expansions in Grabner, Heuberger, and Prodinger [5]. For particular
x, the Hausdorff dimension can be explicitly computed from the dominant eigenvalue of
the adjacency matrix of a certain auxiliary automaton, but it is quite challenging to say
something in general. We manage, however, to derive nontrivial lower and upper bounds.

As already mentioned, for x = −1, the NAF is optimal, as there is no representation of
any integer with fewer nonzero digits. We show in an algorithmic fashion that this is also
true for x = 3. This is no longer true for the other possible values of x. In most cases, the
number 3 serves as a counter example; in a few exceptional cases one must take another
one. As a byproduct of our analysis, we can describe (for x = 1 resp. x = 3) all optimal
representations; recall that in these cases a representation of an integer m is optimal if it
has the same number on nonzero digits as the NAF of m. These representations can be
described by finite automata.

It is always beneficial in order to understand how the arithmetic of a number system
works to understand first how addition of 1 (or any other fixed integer) works. Knuth’s
book [10] has several such examples. Here, we confine ourselves to the transducer describing
the addition of 1 in the instance x = −5.
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For the standard NAF case (x = −1) it is possible to give an explicit formula for the
digits of the expansion, cf. Prodinger [14]. This is somehow a reflection of the fact that
the above mentioned exceptional set is so simple. In the instance x = −5, there is still
an explicit formula for the digits. However, it sometimes predicts a nonzero digit when it
actually is zero, but is correct otherwise. This corresponds to Figure 9, where one can see
that the intervals that contain green resp. blue points, are separated. For other values of
x nothing like that exists anymore.

Before entering into the details, we will fix a minimum amount of notation. Let n be an
integer and D ⊂ Z. A (binary) D-expansion of n is a sequence (. . . , d2, d1, d0) ∈ D

�
0 such

that only finitely many digits are nonzero and such that n =
∑

j≥0 dj2
j. The standard

binary expansion of a nonnegative integer n is its unique {0, 1}-expansion. We will usually
denote sequences by boldface letters. Where appropriate, we will also think about D-
expansions as finite or infinite words over the alphabet D. By value(. . . , d2, d1, d0), we
denote

∑
j≥0 dj2

j. The position of the most significant digit MSB(d) is max{j : dj 6= 0}.

2. Nonadjacent Digit Sets

We recall some definitions of Muir and Stinson [12, 13].

Definition 1. (1) Let 0 ∈ D ⊂ Z and n ∈ Z. Then a D-expansion η of n is called a
D-nonadjacent form (D-NAF) of n, if

ηjηj+1 = 0 for all j ≥ 0.

(2) Let 0 ∈ D ⊂ Z. If there is a D-NAF for every positive integer n, then D is called
a nonadjacent digit set (NADS).

Muir and Stinson [12, 13] study digit sets D = {0, 1, x} for integers x. The following
results have been proved in their paper:

Proposition 2. Let D = {0, 1, x}.
(1) If D is a NADS, then x ≡ 3 (mod 4).
(2) If x ≡ 3 (mod 4), then each positive integer has at most one D-NAF.
(3) The only NADS D = {0, 1, x} with positive x is {0, 1, 3}.

Definition 3. Let D = {0, 1, x} with x ≡ 3 (mod 4). Then we define η0 : Z → D and
r : Z→ Z by setting

η0(n) :=






0, if n ≡ 0 (mod 2),

1, if n ≡ 1 (mod 4),

x, if n ≡ 3 (mod 4),

r(n) :=
n− η0(n)

2
.

It is easily seen (cf. Muir and Stinson [12, 13]) that n ∈ N admits a D-NAF if and only if
r(n) admits a D-NAF and that if (. . . , η′1, η

′
0) is the D-NAF of r(n) then (. . . , η′1, η

′
0, η0(n))

is the D-NAF of n. (Note that r(n) is even if n is odd).
Since r(n) < n for all positive n 6≡ 3 (mod 4) and r2(n) := r(r(n)) < n for all positive

n ≡ 3 (mod 4) with n > |x| /3, the set D is a NADS if and only if all 0 < n ≤ |x| /3 with
n ≡ 3 (mod 4) have a D-NAF.
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Proposition 4. Let D = {0, 1, x} with x < 0 and x ≡ 3 (mod 4). Define the directed
graph G := (V,A) by V = {0, . . . , b|x| /3c} and

A := {(m,n) ∈ V 2 : n ∈ {2m, 4m+ 1, 4m+ x}}.
Then D is a NADS if and only if every n ∈ V is reachable from 0.

Proof. We observe that if 0 6= n ∈ V , then there is exactly one edge with head n, namely
(ri(n), n), where i = (n mod 2) + 1. Therefore, there is a path1 from 0 to n if and only if
n has a D-NAF. �

Therefore, we may check whether a set D is a NADS by simple breadth-first search (cf.
Algorithm 1).

Algorithm 1 Check for NADS

Input: D = {0, 1, x} with x < 0 and x ≡ 3 (mod 4)
Output: Decision, whether D is a NADS
S ← (0)
c← 1
while S 6= () do

m← First element of S
Remove m from S
T ← {2m, 4m+ 1, 4m+ x} ∩ {0, . . . , b|x| /3c}
c← c+ #T
Append T to S

end while

if c = b|x| /3)c+ 1 then

Return(True)
else

Return(False)
end if

It is clear that the run-time of this algorithm is O(|x|). Muir and Stinson [12, 13] give
a list of all NADS {0, 1, x} with |x| ≤ 10 000. The list starts with

3,−1,−5,−13,−17,−25,−29,−37,−53,−61,−65, . . .

They also gave some necessary and some sufficient conditions on x such that {0, 1, x} is a
NADS.

We remark that for negative integers n, we always have r(n) > n if x < 0. This implies
that for some finite positive k, we have rk(n) ≥ 0.

Proposition 5. Let D := {0, 1, x} with x < 0 be a NADS. Then every integer n ∈ Z has
a D-NAF.

1In this paper, a path in a transducer, in an automaton or in a directed graph is not required to have
distinct vertices.



ANALYSIS OF ALTERNATIVE DIGIT SETS FOR NONADJACENT REPRESENTATIONS 5

3. Calculating a D-NAF from right to left

Let D = {0, 1, x} with x ≡ 3 (mod 4) be fixed throughout this section. Our aim is to
give a transducer which transforms the binary expansion of n into its D-NAF from right
to left.

Since the least significant digit η0(n) depends on n mod 4, a transducer will need a
look-ahead of 1 in order to be able to make a decision.

The transducer T0 over the input alphabet {0, 1} and the output alphabet D is defined as
follows: It has the set of states Q0 = {0, . . . , 2+|x|}∪{I}, where the states 0 ≤ m ≤ 2+|x|
represent carries and I denotes the initial state. The sets of initial and terminal states are
{I} and {0}, respectively. The set of transitions is

(3.1) E0 = {I 0|ε−→ 0, I 1|ε−→ 1} ∪
{
m

d|η0(2d+m)−−−−−−→ r(2d+m) : 0 ≤ m ≤ 2 + |x| , d ∈ {0, 1}
}
,

where ε denotes the empty word. Since

r(2d+m) =
2d+m− η0(2d+m)

2
≤ 2 + (2 + |x|) + |x|

2
= 2 + |x| ,

this finite transducer is well defined. Of course, we only have to consider the accessible
states in T0; we therefore define T to be the subgraph of T0 spanned by the accessible
states. The sets of states and transitions of T will be denoted by Q and E, respectively.

Note that this is a right-to-left transducer, i.e., a path m
dJ−1···d0|ηJ−1···η0−−−−−−−−−−→ m′ is m

d0|η0−−−→
m1

d1|η1−−−→ m2
d2|η2−−−→ · · · dJ−1|ηJ−1−−−−−−→ m′.

To prove that the transducer indeed calculates a D-NAF of an integer when reading its
standard binary expansion, the following lemma is useful.

Lemma 6. (1) Let I iJ ···i0|oJ−1···o0−−−−−−−−→ m be a path in T . Then

(oJ−1, . . . , o0) is the D-NAF of value(iJ , . . . , i0)−m2J .

(2) If there is a path m
dJ−1···d0|ηJ−1···η0−−−−−−−−−−→ m′ in T for some m 6= I, then we have

(3.2) 2Jm′ + value(ηJ−1, . . . , η0) = 2 value(dJ−1, . . . , d0) +m.

Proof. The lemma is easily proved by using the definition of the transducer and induction.
�

The following theorem states that the transducer T does what we promised.

Theorem 7. Let D = {0, 1, x} with x ≡ 3 (mod 4) and T = (Q,E, {I}, {0}) the trans-
ducer constructed above. Then the following holds:

(1) #Q ≤ |x|+ 4.
(2) An integer n with binary expansion d has a D-NAF if and only if there is a suc-

cessful path with input label (dMSB(d)+#Q−2, . . . , d0) in T . In this case, the output
label of this successful path is the D-NAF of n.

(3) The set D is a NADS if and only if the only cycle in T with input label 0 · · ·0 is

0
0|0−→ 0.
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Proof. (1) Follows from the definition.
(2) Assume that n > 0 has a D-NAF η and a standard binary expansion d. Let

J := max{MSB(η),MSB(d)}. Consider the path I dJ+2dJ+1dJ ···d0|oJ+1oJ ···o0−−−−−−−−−−−−−−−−→ m in
T . From Lemma 6 we conclude that n − m2J+2 has a D-NAF (oJ+1, oJ , . . . , o0).
This implies that value(ηJ , . . . , η0) ≡ value(oJ+1, . . . , o0) (mod 2J+2). Since both
expansions are D-NAFs, we infer that ηj = oj for 0 ≤ j ≤ J . This yields
oJ+12

J+1 = −m2J+2 from which we conclude that oJ+1 = m = 0. This implies

that I dJ+2dJ+1dJ ···d0|0ηJ ···η0−−−−−−−−−−−−−−→ 0 is a successful path in T . We will prove that the
length of a successful path is at most MSB(d) + #Q − 1 after proving the third
part of the theorem.

On the other hand, if there is some successful path, Lemma 6 shows that it
corresponds to a D-NAF of the value of its input.

(3) When processing the binary expansion of n on the transducer, we can distinguish
between two phases: in the first phase, we read “significant” input, in the second
phase, we just read leading zeros of the binary expansion. If we reach the terminal
state 0 in this second phase, we are successful and got a D-NAF of our input.

However, if we enter a cycle in the second phase apart from the trivial cycle 0
0|0−→ 0,

it is clear that we will never reach the terminal state, i.e., there is no D-NAF.
This implies that after reading dMSB(d), we will reach each of the states Q\{I, 0}

at most once, hence we need at most #Q − 2 leading zeros to reach the terminal
state 0.

�

For x = 3, x = −1, x = −5, x = −9, and x = −13, the transducers T are shown in

Figures 1, 2, 3, 4, and 5, respectively. Note that for x = −9, there is a cycle 3
0|9̄−→ 6

0|0−→ 3,
therefore, {0, 1,−9} is not a NADS.

I

0 1

0|ε

1|ε

0|0

1|0
0|1, 1|3

Figure 1. Transducer T for calculating the {0, 1, 3}-NAF of n from its
standard binary expansion from right to left.
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I

0 1 2

0|ε

1|ε

0|0

1|0
0|1

1|1
0|0

1|0

Figure 2. Transducer T for calculating the {0, 1,−1}-NAF of n from its
standard binary expansion from right to left.

I

0 1

4

2

3

0|ε

1|ε

0|0

1|0
0|1

1|5 0|0

1|0

0|0

1|0

0|5

1|1

Figure 3. Transducer T for calculating the {0, 1,−5}-NAF of n from its
standard binary expansion from right to left.

In some parts of this paper, we will study the input automaton A of T , i.e., we only
consider the input labels of the transitions in T . By construction, the automaton A is
deterministic. We will use the notation m′ = (dJ−1 · · ·d0) ·m for the transition function
in this automaton, which means that there is a path in A from m to m′ with (input)
label (dJ−1 · · ·d0). Furthermore, we will apply these transitions to sets of states also, i.e.
(dJ−1 · · ·d0) ·M := {(dJ−1 · · ·d0) ·m : m ∈M} for M ⊆ Q.

The following lemma will be used several times:

Lemma 8. Let x < 0,

(3.3) k0 := 2 + max{MSB(η(n)) : −2 ≤ n ≤ 2 + |x|}
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I

0 1

6

34

2

0|ε

1|ε
0|0

1|0
0|1

1|9

0|01|0 0|9

1|1

1|0

0|0

0|0

1|0

Figure 4. Transducer T for calculating the {0, 1,−9}-NAF of n from its
standard binary expansion from right to left.

and m ∈ Q \ {I}. Then for any k ≥ k0, we have

(0k) ·m = 0,

(1k) ·m = 2,

where dk means the word consisting of k repetitions of the letter d.

Proof. Let d ∈ {0, 1}. We consider the path

m
dk|ηk−1···η0−−−−−−→ m′

in T . By (3.2), we have

(3.4) 2km′ + value(ηk−1 · · · η0) = 2d(2k − 1) +m = d2k+1 +m− 2d.

By definition of k0, the D-NAF η
′ of m− 2d satisfies MSB(η′) ≤ k− 2. Then (3.4) implies

that value(ηk−1 · · · η0) ≡ value(η′k−1 · · · η′0) (mod 2k), which yields ηj = η′j for 0 ≤ j ≤ k−2.
Inserting this in (3.4) we immediately see that ηk−1 = 0 and m′ = 2d. �

Furthermore, we can also construct a transducer T̃0 which takes an arbitrary binary
{0, 1, x}-expansion and transforms it to the D-NAF: The set of states Q̃0 is {I}∪ {−2 |x|,
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I

0 1

8

4

5

2

3

10

6

0|ε

1|ε
0|0

1|0
0|1

1|1
3

0|0

1|0

0|0

1|0

0|1

1|13

0|0

1|0

0|13

1|1

0|0
1|0

1|0
0|0

Figure 5. Transducer T for calculating the {0, 1,−13}-NAF of n from its
standard binary expansion from right to left.

. . . , |x| + 2}, the set of transitions Ẽ0 is

(3.5) Ẽ0 = {I 0|ε−→ 0, I 1|ε−→ 1, I x|ε−→ x}

∪
{
m

d|η0(2d+m)−−−−−−→ r(2d+m) : −2 |x| ≤ m ≤ 2 + |x| , d ∈ {0, 1, x}
}
.

The transducer T̃ is obtained by removing inaccessible states. The transducers T̃ for x = 3
and x = −1 are shown in Figures 13 and 15, respectively.

4. Frequency of digits

Let D = {0, 1, x} be a fixed NADS. We denote the D-NAF of a nonnegative integer n
by η(n). For d ∈ {1, x}, we denote the number of occurrences of the digit d in the D-NAF
of n ∈ N0 by

(4.1) fd(n) :=
∑

j≥0

[ηj(n) = d] ,
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where we use Iverson’s notation [expr ] = 1 if expr is true and [expr ] = 0 otherwise, cf. [6].
Let XN be a uniformly distributed random variable on {0, . . . , 2N−1}. We are interested

in the distribution of the random variable Fd,N := fd(XN ). We will first calculate the main
terms of mean and variance using a recurrence approach. In a second step, we study the
probability generating function and derive a central limit law using Hwang’s [8] “quasi
power theorem.” For concrete values of x, the generating function approach gives also
second order terms for the mean and the variance.

We derive recursive formulæ for the first two moments

Ed(N) := E(Fd,N ) =
1

2N

2N−1∑

n=0

fd(n),

Sd(N) := E((Fd,N )2) =
1

2N

2N−1∑

n=0

f 2
d (n)

for N ≥ N0, where

N0 := max{MSB(η(n)) : 0 ≤ n < d−x/4e}+ 4.

We split the sum into three parts, depending on the residue class of n modulo 4, writing
n = 2m, n = 4m+ 1, and n = 4m + x, respectively:

Ed(N) =
1

2N

2N−1−1∑

m=0

fd(m) +
1

2N

2N−2−1∑

m=0

fd(m) +
1

2N

2N−2+y−1∑

m=y

fd(m) +
1

4

=
1

2
Ed(N − 1) +

1

2
Ed(N − 2) +

1

4

+
1

2N

y−1∑

m=0

∑

j≥0

([
ηj(2

N−2 +m) = d
]
− [ηj(m) = d]

)
,

where y = d−x/4e. By our choice of N0, we conclude that for 0 ≤ m < y, the D-NAF of
2N−2 +m is simply the D-NAF of m with the digit at position N − 2 set to 1, i.e.,

ηj(2
N−2 +m) = ηj(m) + [j = N − 2] .

This yields

Ed(N) =
1

2
Ed(N − 1) +

1

2
Ed(N − 2) +

1

4
+
y [d = 1]

2N
, N ≥ N0.

Solving this linear recurrence with constant coefficients, we get

(4.2) Ed(N) = E(Fd,N ) =
1

6
N + ed +O

(
1

2N

)
,

where ed is some constant.
A recurrence relation for the second moment can be derived similarly, we get

Sd(N) =
1

2
Sd(N − 1) +

1

2
Sd(N − 2) +

1

2
Ed(N − 2) +

1

4
+

C

2N
, N ≥ N0,
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where C = [d = 1]
∑y−1

m=0(2fd(m) + 1) is a constant. Inserting (4.2) (with undetermined
constants), we again get a linear recurrence with constant coefficients. Solving it, we get

Sd(N) = E((Fd,N )2) =
1

36
N2 +

(
11

108
+
ed

3

)
N + (vd + e2d) +O

(
N

2N

)

for some constant vd. Subtracting (Ed(N))2, we get

(4.3) V(Fd,N) = E((Fd,N )2)− (E(Fd,N ))2 =
11

108
N + vd +O

(
N

2N

)
.

We now consider the probability generating function

Gd(Y, Z) =
∑

N≥0

∑

m≥0

P(Fd,N = m)Y mZN .

We define the (#Q×#Q)-matrices Ad := Ad(Y ) = (aij)i,j∈Q and Bd = Bd(Y ) = (bij)i,j∈Q

by

aij =
∑

v∈{0,1}

i
v|η−→j∈E

1

2
Y [η=d], bij =

{
Y [η=d], if there is a transition i

0|η−→ j ∈ E,
0, otherwise,

where the rows and columns of Ad and Bd are ordered as I, 0, 1, . . .. Then Gd(Y, Z) can
be expressed as

Gd(Y, Z) = (1, 0, . . . , 0)(I − AdZ)−1B#Q−2
d (0, 1, 0, . . . , 0)t,

where the factor B#Q−2
d ensures that we come back to the terminal state 0. For concrete

x, Gd can be calculated explicitly, for instance, we have

G1(Y, Z) =
16− 8Z + 8Y Z − 4Z2 − Y Z4 + Y 2Z4

2(−2 + Z)(−4 + 2Z + Z2 + Y Z2)
,

G−5(Y, Z) =
−(8 + 4Z − Y Z3 + Y 2Z3)

2(−4 + 2Z + Z2 + Y Z2)

for x = −5. Then we have

E(Fd,N ) = [ZN ]

(
∂Gd

∂Y

∣∣∣∣
Y =1

)
,

V(Fd,N) = [ZN ]

(
∂2Gd

∂Y 2

∣∣∣∣
Y =1

)
+ E(Fd,N)− (E(Fd,N ))2.

For the first ten values of x, we calculated means and variances by this approach. Com-
paring with (4.2) and (4.3) for the first few values of x gives the constants ed and vd in
Table 1.

From the definition (3.1) of the transducer T it is clear that

Ad(Y ) =

(
0 1 1 0 . . . 0

0 Ãd(Y )

)
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x e1 v1 ex vx

3 2
9
≈ 0.2222 8

81
≈ 0.0987 − 1

9
≈−0.1111 − 4

81
≈−0.0493

−1 5
9
≈ 0.5555 − 16

81
≈−0.1975 − 1

9
≈−0.1111 − 4

81
≈−0.0493

−5 23
36
≈ 0.6388 − 253

1296
≈−0.1952 − 1

36
≈−0.0277 155

1296
≈ 0.1195

−13 467
576
≈ 0.8107 − 61609

331776
≈−0.1856 − 25

576
≈−0.0434 35279

331776
≈ 0.1063

−17 319
288
≈ 1.1076 − 13825

82944
≈−0.1666 71

576
≈ 0.1232 176783

331776
≈ 0.5328

−25 7553
9216
≈ 0.8195 − 20629249

84934656
≈−0.2428 637

4608
≈ 0.1382 8343287

21233664
≈ 0.3929

−29 2183
2304
≈ 0.9474 − 1241137

5308416
≈−0.2338 − 37

2304
≈−0.0160 893351

5308416
≈ 0.1682

−37 47939
36864

≈ 1.3004 − 197600137
1358954496

≈−0.1454 26143
73728

≈ 0.3545 6190893119
5435817984

≈ 1.1389

−53 22009
18432

≈ 1.1940 − 54592561
339738624

≈−0.1606 14561
36864

≈ 0.3949 1292596799
1358954496

≈ 0.9511

−61 10289
9216
≈ 1.1164 − 19291489

84934656
≈−0.2271 − 187

9216
≈−0.0202 13417319

84934656
≈ 0.1579

Table 1. Constant terms in means and variances of Fd,N

for some (#Q− 1)× (#Q− 1)-matrix Ãd. By definition of T and Lemma 8, the matrix Ãd

is the adjacency matrix of a strongly connected directed graph. Moreover, since there is a

loop 0
0|0−→ 0 in T , the matrix Ã`

d(1) is positive for some positive integer `. Therefore, Ãd(1)
is primitive (cf. for instance [11, §15.6]) and has a unique simple eigenvalue of maximal

modulus by the Perron-Frobenius theorem. Since the spectrum σ(Ad(1)) = σ(Ãd(1))∪{0},
the same holds for Ad(1) and, by continuity, for Ad(Y ) for Y in some neighbourhood of 1.

Thus, the generating function Gd is a rational function whose numerator has a unique
simple pole of minimal modulus for Y sufficiently close to 1. We obtain

E(eFd,N s) = eu(s)N+v(s)
(
1 +O

(
ρN
))

for some analytic functions u(s) and v(s) and some 0 < ρ < 1 for |s| sufficiently small. By
Hwang’s [8] “quasi power theorem” we conclude the central limit theorem (4.4).

Theorem 9. Let D = {0, 1, x} be a NADS, d ∈ {1, x} and Fd,N the number of occurrences
of the digit d in the D-NAF of a randomly chosen integer in the interval {0, . . . , 2N − 1}.
Then we have

E(Fd,N) =
1

6
N + ed +O

(
1

2N

)
,

V(Fd,N) =
11

108
N + vd +O

(
N

2N

)

for some constants ed and vd depending on x, which can be computed explicitly. For |x| ≤
61, they are given in Table 1.
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Furthermore, we have

(4.4) P

(
Fd,N ≤

1

6
N + z

√
11

108
N

)
=

1√
2π

∫ z

−∞

e−t2/2 dt +O

(
1√
N

)

uniformly with respect to z, z ∈ R.

5. “Calculating” Digits from Left To Right

The aim of this section is to give a description of arbitrary digits in a NADSD = {0, 1, x}.
If n has standard binary expansion (. . . d`+1d`d`−1 · · ·d0) and D-NAF (. . . η`+1η`η`−1 · · ·η0),
then η` depends on n mod 2`+2 only. Alternatively, η` depends on

{
n/2`+2

}
, where {z}

denotes the fractional part of z.
In Figures 7, 8, 9, and 10, we draw the second digit from the left for x = 3, −1, −5, and

−13 respectively: For k = 3, . . . , 12 and n = 0, . . . , 2k − 1, we calculated the `th digit of
the D-NAF of all integers m such that

n

2k
≤
{ m

2`+2

}
<
n + 1

2k
;

these are those integers whose first (from the left!) digits in the standard binary expansion
agree with the first digits of n. In some cases, the `th digit was the same for all integers
m which lie in the given interval, in some cases, several digits could occur. We mapped
the sets of possible digits to colors according to Figure 6 and filled a rectangle of width
1/2k and height 1 with this color at position (n/2k, 12− k). We remark that for x = −1,
the picture is rather regular, whereas for x = −13, many decisions are still open after 12
digits.

x 1

0

{1, x}

{0, 1}{0, x}
D

Figure 6. Colors for Figures 7–10.

In what follows, we will describe this phenomenon in terms of the states of the transducer
T .

Since the digit η` depends on the state m`+1 = (d` · · ·d0) · I and on d`+1, we will try to
predict the state m`+1 from the knowledge of d` · · ·d`−r+1 for small r, wherever possible.
Since we do not know in which state we are after reading the unknown digits d`−r · · ·d0,
we have to assume that we are in any state (apart from the initial state). So we denote
the set Q \ {I} by Q∗.
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Figure 7. Second digit from the left for x = 3.

Figure 8. Second digit from the left for x = −1.

Figure 9. Second digit from the left for x = −5.

We define the map Φr : {0, 1}r → Q∗ by

Φr(x1x2 · · ·xr) := (x1x2 · · ·xr) ·Q∗.

It is clear that Φr+1(x1x2 · · ·xrxr+1) ⊆ Φr(x1x2 · · ·xr). Therefore, for any x = (x1x2 · · · ) ∈
{0, 1}

�

, the limit

Φ(x1x2 · · · ) := lim
r→∞

Φr(x1 . . . xr)
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Figure 10. Second digit from the left for x = −13.

exists. We note that if Φ(x) is a singleton {m} for some x ∈ {0, 1}
�

, we have Φr(x1x2 · · ·xr) =
{m} for some r ∈ N. In this case, we have Φ(y) = Φ(x) for any y ∈ {0, 1}

�

with the
property that the prefixes of length r of x and y coincide. This means that Φ is continuous
in all points where it has a singleton image.

We now assume x < 0. From Lemma 8, we see that for any (x1, . . . , xj) ∈ {0, 1}j and
k ≥ k0, we have

Φk+j+1(x1 · · ·xj10k) = (x1 · · ·xj1) · {0} = (x1 · · ·xj) · {1}
= (x1 · · ·xj0) · {2} = Φk+j+1(x1 · · ·xj01k).

This implies that Φ(x1x2 · · ·xj0111 · · · ) = Φ(x1x2 · · ·xj1000 · · · ).
Therefore, Φ descends to a function on the unit interval [0, 1] (which we call Φ again) by

Φ

(
∑

j≥1

xj2
−j

)
:= Φ(x1x2 · · · ).

This function is continuous at all points z ∈ [0, 1] where Φ(z) is a singleton. This implies
that the sets Aj := Φ−1({j}) are open for j ∈ Q∗. The set A =

⋃
j∈Q∗ Aj is therefore open.

Since the set of real numbers in [0, 1] whose binary expansion contains a block (0k0) has
Lebesgue measure 1 and is a subset of A by Lemma 8, we conclude that λ(A) = 1, too.

We translate our results back to the `th digit: We have η`(n) = η0(2d`+1 +m`+1) = η for
m`+1 = (d` · · ·d0)·I and the standard binary expansion d. The relationm`+1 = (d` · · ·d0)·I
is equivalent to

{
n/2`+1

}
∈ Am`+1

, since Φk0+`+1(
{
n/2`+1

}
) is a singleton by Lemma 8. To

include d`+1 in our description, we define ϕd(z) := (d+ z)/2 for d ∈ {0, 1} and see that
{ n

2`+2

}
∈ ϕd`+1

(Am`+1
).

We now collect all sets ϕd(Am) which lead to the same digit η ∈ D in the set

Wη := int

( ⋃

d∈{0,1}
m∈Q∗

η0(2d+m)=η

ϕd(Am)

)
,
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where the bar denotes closure and int denotes the interior. We take the interior of the
closure for “aesthetical reasons”: We want to avoid “holes” in the sets which would only
be meaningful at the level of the transducer, but not on the level of the digits. Since{
n/2`+1

}
is in the interior of some Am anyway, the dyadic points are not affected by this

operation.
This yields the following theorem.

Theorem 10. Let D = {0, 1, x} be a NADS with x < 0. There are disjoint open subsets
Wη, η ∈ D, of the unit interval [0, 1] such that

η`(n) = η ⇐⇒
{
n/2`+2

}
∈ Wη

for ` ≥ 0. The sum of the Lebesgue measures of the Wη, η ∈ D, equals 1.

6. Dimension of the boundary

Theorem 10 shows that

[0, 1] \ (W0 ∪W1 ∪Wx) = ∂(W0 ∪W1 ∪Wx) = ∂W0 ∪ ∂W1 ∪ ∂Wx

has Lebesgue measure zero. However, Figures 9 and 10 demonstrate that this “exceptional
set” is quite “irregular.” The aim of this section is to quantify this “irregularity” in terms
of Hausdorff dimension.

We will calculate the Hausdorff dimension of ∂(W0 ∪W1 ∪Wx) as the spectral radius of
the adjacency matrix of an auxiliary automaton as follows.

We construct auxiliary automata Am for m ≥ 2. The set of states is the set Qm :=
{I ⊆ Q∗ : #I = m} of m element subsets of Q∗. The alphabet is still {0, 1}. The set of
transitions

Em := {I d−→ J : J = d · I = {d · i : i ∈ I}, d ∈ {0, 1}, I, J ∈ Qm}
is defined in terms of the transitions in the input automaton underlying T . All states
are initial and terminal states. The adjacency matrix of Am will be denoted by Mm. For
x = −5 and m = 2, this automaton is shown in Figure 11.

We will mainly work with A2, which is the only automaton to occur in the statement of
our result, however in some cases, we may be forced to use Am for some m > 2 instead.

The remaining part of this section is devoted to the proof of the following theorem.

Theorem 11. Let D = {0, 1, x} with x < 0 be a NADS and Wη, η ∈ D, be the sets
described in Theorem 10. Let ρ(M2) denote the spectral radius of the adjacency matrix M2

of A2. Then we have
dimH(∂(W0 ∪W1 ∪Wx)) = log2 ρ(M2)

and
0 < Hlog2 ρ(M2)(∂(W0 ∪W1 ∪Wx)) <∞.

For x = −1, we have log2 ρ(M2) = 0, for |x| ≥ 5, we have

0 < 0.347121− 1.04136

`+ 2
≤ log2 ρ(M2) ≤ 1− 1

2k0 log 2
+

1

22k0+1 log 2
< 1,
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0, 1 0, 4

0, 2

0, 3

1, 4

1, 2

1, 34, 24, 3

2, 3

1

0

1

0 1

0
1

0

1

0

1 0

1

0

1

0

1

0

Figure 11. Automaton A2 for x = −5.

where k0 has been defined in (3.3) and ` = blog2(|x|+ 3)c − 1.
For |x| ≤ 29, the values log2 ρ(M2) are shown in Table 2.

The transitions in Am will again be denoted by J = d · I, since this coincides with the
earlier definition for subsets of Q∗. However, this transition is not defined in Am for every
d and I, since it might be the case that I is mapped to some J with #J < m. We will
also reuse the notation d · I for strings d ∈ {0, 1}n.

As in the previous section, we first study the problem at the level of the states of the
transducer and will translate them back to the level of output digits afterwards. We
consider the set B := [0, 1]\A of those real numbers which do not allow us to decide about
the final state from the knowledge of a finite number of digits. To calculate the Hausdorff
dimension of B for general x, we proceed as follows: We first derive an upper bound for
the box dimension using a suitable covering of B. In a second step, we construct a lower
bound for the box dimension. Finally we will show that a subset of B can be interpreted
as a finite union of graph directed sets (cf. Falconer [4]) satisfying an open set condition,
which implies (cf. Edgar [3]) that the Hausdorff, box and similarity dimensions are equal.
Finally, we use this fact for calculating the Hausdorff Dimension of B explicitly for small
values of |x|.
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x #Q #Q2 r(A2) dimH(∂(W0 ∪W1 ∪Wx))
−1 3 3 2 0
−5 5 10 3 0.7618
−13 9 36 7 0.9003
−17 10 45 6 0.9037
−25 14 91 17 0.9364
−29 14 91 8 0.9357
−37 18 153 34 0.9492
−53 22 231 25 0.9606
−61 25 300 55 0.9547
−65 25 300 33 0.9477
−113 37 666 79 0.9733
−121 41 820 147 0.9729
−125 39 741 83 0.9649
−137 42 861 98 0.9757
−145 48 1128 228 0.9763
−149 46 1035 130 0.9790

Table 2. Order of T and of A2, number r(A2) of strongly connected com-
ponents of A2, and Hausdorff dimension of ∂(W0 ∪W1 ∪Wx).

So we start by giving an upper bound for the upper box dimension

dimBB = lim sup
n→∞

log2N2−n(B)

n
,

where N2−n(B) denotes the number of 2−n-mesh intervals that intersect B. We have

(6.1) N2−n(B) = #{d ∈ {0, 1}n : Φn(d) is not a singleton},
since if Φn(d) is not a singleton, there are two points z1 and z2 in the interval [

∑
j dj2

−j,
∑

j dj2
−j+

2−n] lying in disjoint open sets Am1
and Am2

. Therefore, there must be a point of B between
z1 and z2.

Lemma 12. For k0 defined in (3.3), we have

(6.2) dimB(B) ≤ 1− 1

2k0 log 2
+

1

22k0+1 log 2
.

Proof. By Lemma 8, we have N2−n(B) ≤ #Un, where

Un =
{
(x1, . . . , xn) ∈ {0, 1}n : (xj, . . . , xj+k0−1) /∈ {(0k0), (1k0)} for all 1 ≤ j ≤ n− k0 +1

}
.

The strings in Un can be described by a regular expression

(ε+ 0 + · · ·+ 0k0−1)
(
(1 + 12 + · · ·+ 1k0−1)(0 + 02 + · · ·+ 0k0−1)

)∗
(ε+ 1 + · · ·+ 1k0−1),
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which can be translated to the generating function

G(z) :=
∑

n≥0

#Unz
n

= (1 + · · ·+ zk0−1) · 1

1− (z + · · ·+ zk0−1)2
· (1 + · · ·+ zk0−1) =

1− zk0

1− 2z + zk0
.

Let q(z) := 1− 2z + zk0 . We note that we have k0 ≥ 4 by (3.3). Then |q(z)− (1− 2z)| =
|zk0 | < 2 |z| − 1 ≤ |1− 2z| for 1− δ < |z| < 1 for a suitable δ. Therefore, q(z) has exactly
one zero with modulus less than 1, say ρ, by Rouché’s Theorem. Since q(1/2) > 0 and
q(1/2 + 1/(2k0)) < 0, we know that ρ is real and ρ = 1/2 + O(k0

−1). By bootstrapping,
we obtain

ρ =
1 + ρk0

2
=

1

2
+O(2−k0), ρ =

1

2
+

1

2k0+1
+O

(
k0

4k0

)
.

In fact, we have

(6.3) ρ ≥ 1

2
+

1

2k0+1

for k0 ≥ 4, since q(2−1 + 2−(k0+1)) > 0.
Defining the constant

ck0
:= lim

z→ρ
G(z)

(
1− z

ρ

)
,

we have
#Un = [zn]G(z) =

ck0

ρn
+O(1).

Therefore, we conclude that the upper box dimension of B can be bounded from above by
dimB(B) ≤ − log2 ρ, hence (6.3) yields (6.2). �

We now derive lower bounds for the box dimension.

Lemma 13. Let |x| ≥ 5. Then we have
(6.4)

dimB(B) = lim inf
n→∞

log2N2−n(B)

n
≥
(

1

2
− 3

2`+ 4

)
log2

1 +
√

5

2
≈ 0.347121− 1.04136

`+ 2
> 0,

where ` = blog2(|x|+ 3)c − 1.

Proof. From the definition of T , we deduce that 0 and 1 always have the neighbourhood
shown in Figure 12, where s := (3 + |x|)/2. We further notice that any path from s to 1
has at least length ` = blog2 sc, since m ≥ 2i implies r(2d+m) ≥ 2i−1 for d ∈ {0, 1}. We
consider the set of sequences

(6.5) Ln := {d = (dn, . . . , d1) ∈ {0, 1}n : didi+1 = 0 for 1 ≤ i < n

and if (di · · ·d1) · s = 1 then di+1 = 1 for 1 ≤ i < n}.
We claim that d · s 6= d · 0 for all d ∈ Ln. To prove this, we observe that d · 0 = dn. For
any 1 ≤ i ≤ n, we have (di · · ·d1) · s ≥ 1 by definition (and the known neighbourhood of 0
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I

0 1

s

2

other states

0|ε

1|ε

0|0

1|0
0|1

1|x

0|0

1|0

Figure 12. Structure of T for general x (Neighbourhoud of I, 0, 1 is correct.)

and 1). If (di · · ·d1) · s = 1, we have di = 0, which implies (di · · ·d1) · 0 = 0. This proves
the claim. By (6.1), this implies that N2−n(B) ≥ #Ln.

We now derive a lower bound for #Ln. For 1 ≤ t ≤ ` we have

Lt := {(dt, . . . , d1) ∈ {0, 1}t : didi+1 = 0 for 1 ≤ i < t},
since the second condition is no restriction for sequences of that length. The regular
expression for sequences which avoid adjacent 1s is 0∗(100∗)∗(ε + 1), the corresponding
generating function equals

1

1− z
1

1− z2

1−z

(1 + z) =
1 + z

1− z − z2
=
∑

t≥0

Ft+2z
t,

where Ft denotes the Fibonacci sequence Ft+2 = Ft+1 + Ft with F0 = 0 and F1 = 1.
Therefore, we get

#Lt = Ft+2 =
αt+2

√
5
− O(α−t) ≥ αt.

for α = (1 +
√

5)/2 and 1 ≤ t ≤ `. For d = (d`−2, . . . , d0) ∈ L`−1 we define

ψ(d) := 1h((d0) · s)d0,

where h(m) is the input label of a shortest path from state m to state 1 whose input label
does not start (at the right) with 1 and does not contain adjacent ones. We note that if
(d0) · s = 1, we have d`−2 = 0, h(1) = ε, and ψ(d) does not contain adjacent ones.
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If m 6= 0, we write h(m) = h′(0 ·m), where h′(m′) is the input label of a shortest path
from state m′ to state 1 whose input label does not contain adjacent ones. We claim that

(6.6) blog2m
′c ≤ |h′(m′)| ≤ blog2m

′c+ 1,

where |h′(m′)| denotes the length of h′(m′). The left inequality follows from the argument
given before (6.5). For the right inequality, we choose the input digit d to be 0 unless
m′ ≡ 3 (mod 4), in which case we take d = 1. Thus η0(2d+m′) ∈ {0, 1} and r(2d+m′) =
d+bm′/2c. If we choose d = 1, it is clear that r(2d+m′) is even so that we will not choose
input 1 in the next step. Furthermore, we have blog2(r(2d+m′))c = blog2(m

′)c− 1 unless
m′ = 2g−1 for some g. But in the latter case, we have r(2d+m′) = 2g−1 with |h′(m′)| = g.
Therefore, (6.6) follows by induction.

We conclude that

|h′(m′)| ≤ blog2m
′c + 1 ≤ blog2(|x|+ 2)c+ 1 ≤ `+ 2

and therefore |ψ(d)| ≤ 2`+ 4. We now define an injective map L
bn/(2`+4)c
`−1 → Ln by

(dbn/(2`+4)c, . . . ,d1) 7→ d0

(
n−

bn/(2`+4)c∑

j=1

|ψ(dj)|
)
ψ(dbn/(2`+4)c) · · ·ψ(d1),

where d0(m) ∈ Lm is some fixed admissible string of length m which is used to obtain the
required length n. This yields

#Ln ≥ α(`−1)bn/(2`+4)c ≥ 1

α`−1
·
(
α(`−1)/(2`+4)

)n
.

For |x| ≥ 5, the bound (6.4) follows. �

We want to prove that the lower box, upper box, Hausdorff and similarity dimensions
of B agree. To this aim, we first collect a few simple consequences of Perron-Frobenius
theory.

We denote the spectral radius of a (n× n)-matrix M by ρ(M). If I, J ⊆ {1, . . . , n}, we
denote the submatrix of M with rows I and columns J by M(I, J).

If M = (mij)1≤i,j≤n is a nonnegative (n × n)-matrix, we will consider the digraph G
induced by M , i.e., the directed graph with set of vertices {1, . . . , n} and set of arcs
{(i, j) : mij > 0}. We will call any strongly connected component C ⊆ {1, . . . , n} of G
which fulfills

(6.7) ρ(M(C, C)) = ρ(M)

a dominating component of M . We will identify subsets of {1, . . . , n} and the subgraph of
G induced by these vertices when speaking about strongly connected components.

Lemma 14. Let M be a nonnegative (n× n)-matrix. Then there is a nonnegative vector
0 6= x ∈ R

n such that

Mx = ρ(M)x.

Let G be the directed graph induced by M . Then M has a dominating component.
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Proof. By continuity, the assertion on the nonnegative eigenvector follows from the Perron-
Frobenius theorem, cf. [11, Theorem 15.5.1], for instance.

Let C1, . . . , Cr be the strongly connected components of G. We consider the auxiliary
digraph G′ with set of vertices {C1, . . . , Cr} and an arc from Ci to Cj if there is an arc from
some vertex in Ci to some vertex in Cj in the original digraph G. By construction, the
auxiliary digraph G′ has no directed cycle. This implies that we may sort the components
in such a way that the adjacency matrix of G′ is upper triagonal. If we permute the rows
and columns of M according to the strongly connected components, we get a matrix which
is block upper triagonal. Therefore, the spectrum σ(M) of M equals

σ(M) =

r⋃

i=1

σ(M(Ci, Ci)).

This implies that ρ(M) = maxi=1,...,r ρ(M(Ci, Ci)). This proves the existence of a dominat-
ing component. �

Lemma 15. Let M be a nonnegative (n× n)-matrix and e = (1, . . . , 1)t ∈ R
n. Then

lim
m→∞

log2(e
tMme)

m
= log2 ρ(M),

which may equal −∞.

Proof. Each entry of Mm is bounded by a constant times mn−1ρ(M)m, so the same holds
for the nonnegative number etMme.

On the other hand, let x be a nonnegative eigenvector of M for ρ(M), which exists by
Lemma 14. Without loss of generality, 0 ≤ xj ≤ 1 for j = 1, . . . , n. Therefore,

etMme ≥ xtMmx = ρ(M)mxtx.

Taking logarithms and limits yields the result. �

In general, we cannot expect the automaton Am to be strongly connected. Therefore,
we cannot apply the results on graph directed sets directly, but we have to apply it on
the strongly connected components. To cover the remaining parts of B, we give an upper
bound for the upper box dimension (and therefore for the Hausdorff dimension) using the
spectral radius ρ(M2) of M2 at this point.

Lemma 16. We have
dimH(B) ≤ dimB(B) ≤ log2 ρ(M2).

For |x| ≥ 5, we have ρ(M2) > 1.

Proof. Consider d ∈ {0, 1}n such that Φn(d) is not a singleton. Then there are u 6= v ∈ Q∗

such that d · u 6= d · v, i.e., there is at least one path in A2 from some {u, v} ∈ Q2 to some
{u′, v′} ∈ Q2 with label d. Thus the number N2−n(B) can be bounded from above by the
number of paths of length n in A2, which equals etMn

2 e. From Lemma 15 we conclude that

dimB(B) = lim sup
n→∞

log2N2−n(B)

n
≤ lim sup

n→∞

log2 e
tMn

2 e

n
= log2 ρ(M2).
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It is well known that the Hausdorff dimension is always less or equal the lower (and therefore
the upper) box dimension.

Since dimB(B) > 0 for |x| ≥ 5 by Lemma 13, we conclude that ρ(M2) > 1 in that
case. �

Proof of Theorem 11. We assume that |x| ≥ 5.
Since 0 /∈ 1 · Q∗ (cf. Figure 12), the automaton A#Q∗ has one state and at most one

transition, hence ρ(M#Q∗) ≤ 1 < ρ(M2) by Lemma 16. We now choose m ≥ 2 maximal
such that ρ(Mm) ≥ ρ(M2). The preceeding observation implies that m < #Q∗.

We define sets VI := {x ∈ [0, 1] : I ⊆ Φ(x)} for I ∈ Qm. By definition of Φ, these sets
are compact. We consider the contracting similarities ϕd(z) := (d + z)/2 for d ∈ {0, 1}.
We clearly have Φ(ϕd(z)) = d · Φ(z) for d ∈ {0, 1} and z ∈ [0, 1]. Then it is easily proved
that

(6.8) VI =
⋃

d∈{0,1}
J∈Qm

I=d·J

ϕd(VJ), I ∈ Qm.

Let now C ⊆ Qm be a dominant component of Mm, i.e., ρ(Mm(C, C)) ≥ ρ(M2) > 1.
First, we claim that

(6.9) VI 6= ∅ for every I ∈ C.
To this aim, we note that there is a directed cycle I

d−→ I in C, where d ∈ {0, 1}r for some
1 ≤ r ≤ #C. It follows that

Φsr(d
s) = ds ·Q∗ ⊇ ds · I = I,

which implies that Φ(dω) ⊇ I, where dω denotes the infinite word ddd · · · . The real
number z with binary expansion 0.ddd · · · is therefore an element of VI. This proves (6.9).

Next, we claim that

(6.10) UI := {z ∈ [0, 1] : I = Φ(z)} 6= ∅ for every I ∈ C.
To prove this, we assume that UI = ∅ for some I ∈ C. Let now d ∈ {0, 1}n for some n ∈ N

be the label of a path of length n in C, i.e., there are K1, K2 ∈ C such that K1
d−→ K2 is a

path in C. We take some z ∈ VK1
and a path K2

d
′

−→ I in C. We have

Φ(ϕd′d(z)) = d′d · Φ(z) ⊇ d′d ·K1 = I,

where ϕ � is defined by ϕδ1···δn
:= ϕδ1 ◦ · · · ◦ ϕδn

.
Since UI = ∅ by assumption, this implies that

# (d ·Q∗) ≥ # (d′d ·Q∗) ≥ #Φ(ϕd′d(z)) > #I = m,

which yields # (d ·Q∗) ≥ m+ 1. This means that there is a path K3
d−→ K4 of length n in

Am+1. The above construction shows that there is an injective map from the set of labels
of paths of length n in C to the set of paths of length n in Am+1. We obtain

etMn
m+1e ≥ #{d ∈ {0, 1}n : d is label of a path of length n in C} ≥ 1

#C2
etMm(C, C)ne.
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By Lemma 15, we conclude that

log2 ρ(Mm+1) = lim
n→∞

log2(e
tMn

m+1e)

n

≥ lim
n→∞

log2

(
1

#C2 e
tMm(C, C)ne

)

n
= log2 ρ(Mm(C, C)) = log2(ρ(M2)).

This yields ρ(Mm+1) ≥ ρ(M2), a contradiction to the choice of m. Hence our claim (6.10)
is proved.

We now restrict (6.8) to the component C: There is a unique collection of nonempty
compact sets (V C

I )I∈C, such that

(6.11) V C
I =

⋃

d∈{0,1}
J∈C

I=d·J

ϕd(V
C
J ), I ∈ C,

cf. for instance Edgar [3, Theorem 4.3.5]. These sets V C
I , I ∈ Qm, are the graph directed

sets defined by C and the contractions ϕd, cf. Falconer [4].
It is clear that V C

I ⊆ VI for each I ∈ C, since the fixed point (V C
I )I∈C of (6.11) can

be obtained by iterating the right hand side of (6.11) starting with the collection (VI)I∈C,
which yields a sequence of tuples of compact sets which is nonincreasing in each component
by (6.8).

For I ∈ C, we define

OI := {z ∈ [0, 1] : d(z, VI) < d(z, VJ) for all J ∈ Qm ∪ {∂} with J 6= I},
where V∂ := {0, 1} is the boundary of the unit interval, d(z,K) := inf{d(z, y) : y ∈ K} for
compact sets K and the Euclidean distance d(z, y). The sets OI , I ∈ C, are open. Since
Φ(0) = {0} and Φ(1) = {2} by Lemma 8, we have UI ⊆ OI , hence OI 6= ∅ for I ∈ C by
(6.10). It is easily checked that for fixed I ∈ C, we have

(6.12)
ϕd(OJ) ⊆ OI, for all d ∈ {0, 1}, J ∈ C with I = d · J,

the sets ϕd(OJ) for d ∈ {0, 1}, J ∈ C with I = d · J are disjoint.

This is the open set condition, cf. Edgar [3, Definition 6.4.7].
Therefore, by Edgar [3, Theorem 6.4.8], we have dimH(V C

I ) = s and Hs(V C
I ) > 0 for all

I ∈ C, where s is the unique similarity dimension such that ρ(2−sMm(C, C)) = 1. Thus we
have s = log2 ρ(Mm). Since V C

I ⊆ VI ⊆ B and

0 < Hlog2 ρ(Mm)(V C
I ) ≤ Hlog2 ρ(Mm)(B) ≤ Hlog2 ρ(M2)(B) <∞

by definition of m and Lemma 16, we have dimH(B) = dimB(B) = log2 ρ(M2).
Finally, we translate this result to the sets Wη defined in Theorem 10. From the definition

of Wη we conclude that for η ∈ {0, 1, x}, we have

(6.13) Hlog2 ρ(M2)(∂Wη) ≤
∑

d∈{0,1}
m∈Q∗

η0(2d+m)=η

1

ρ(M2)
Hlog2 ρ(M2)(∂Am) <∞.
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We now choose I ∈ C and {u, v} ⊆ I in such a way that u 6= v and v2(u− v) is minimal,
where v2(n) denotes the maximal t such that 2t divides n. Since ρ(M2) > 1 by Lemma 16,
there is a transition J = d·I in C. We set u′ = d·u and v′ = d·v. As #I = #J = m, we have
u′ 6= v′. If u ≡ v (mod 4), then u′−v′ = 1/2(u−η0(2d+u))−1/2(v−η0(2d+v)) = 1/2(u−v),
so v2(u

′ − v′) < v2(u − v), a contradiction. If u and v are both even, we similarly get
u′−v′ = 1/2(u−v), which is also a contradiction. Therefore, we have η0(2d+u) 6= η0(2d+v).
Let now z ∈ VI . By definition of Φ, every neighborhood of z contains a point z1 ∈ Au and
a point z2 ∈ Av. We clearly have ϕd(z1) ∈ Wη0(2d+u) and ϕd(z2) ∈ Wη0(2d+v), which implies
that ϕd(z) ∈ ∂(W0 ∪W1 ∪Wx). We conclude that

(6.14) 0 <
1

ρ(M2)
Hlog2 ρ(M2)(V C

I ) = Hlog2 ρ(M2)(ϕd(V
C
I )) ≤ Hlog2 ρ(M2)(∂(W0 ∪W1 ∪Wx)).

This concludes the proof of the theorem for |x| ≥ 5.
For x = −1, we note that ρ(M2) = 1, which implies that dimH(∂(W0 ∪W1 ∪Wx)) = 0

by Lemma 16. It can easily be checked that in this case, we have

W0 = [0, 1/6) ∪ (2/6, 4/6) ∪ (5/6, 1],

W1 = (1/6, 2/6),

W−1 = (4/6, 5/6),

and therefore H0(∂(W0 ∪W1 ∪Wx)) = 4.
The remaining dimensions in Table 2 have been computed using Mathematica r©. �

7. Geometric Approach for Calculating the Frequency of Digits

We give a geometric approach (going back to Delange [2]) using the results in the pre-
ceeding sections to compute the summatory function of the frequency of digits. In contrast
to the results in Section 4, we are now able to compute the summatory function up to
some integer N instead of considering the full block length {0, . . . , 2L− 1} as in Section 4.
However, we will need the results of that section to compute the Lebesgue measures of the
sets Wd, d ∈ {0, 1, x}.

For d ∈ {1, x} and positive N ∈ Z, let

Hd(N) :=

N−1∑

n=0

fd(n) =

N−1∑

n=0

∑

k≥0

[ηk(n) = d] ,

where fd(n) has already been defined in (4.1). Since ηk(n) = 0 for k > blog2(n)c+ #Q− 2
by Theorem 7, Theorem 10 implies that

Hd(N) =
N−1∑

n=0

K+1∑

k=0

[{ n

2k+2

}
∈ Wd

]
,

where K = blog2Nc + #Q − 2. We proceed as in Section 4 of [5]: We replace Wd by
an appropriate approximation Wd,k, replace the sum by an integral and pull out the main
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term given by the Lebesgue measure of Wd. Since the technical modifications are straight
forward, we skip the details. We get

(7.1) Hd(N) = λ(Wd)N log2N +Nψd({log2 N}) +O(N log2 ρ(M2)),

where ρ(M2) is the dominant eigenvalue of the auxiliary automaton as in Theorem 11,

ψd(z) := λ(Wd)(#Q− {z}) + 2{z}+#Q−2Ψd(2
{z}+2−#Q) +

∞∑

k=−1

βk,

Ψd(t) :=
∞∑

k=0

∫ t

0

([{
x2k−2

}
∈ Wd

]
− λ(Wd)

)
dx,

βk :=

∫ 1

0

(
[{x} ∈ Wd,k]− [{x} ∈ Wd]

)
dx,

Wd,k :=
⋃

m∈2k+2Wd∩ �

[
m

2k+2
,
m+ 1

2k+2

)
.

As in [5] we see that ψd(z) is continous in [0, 1) and that limz→1− ψd(z) exists. Of course,
ψd is 1-periodic. We cannot conclude that ψd is continuous at z = 1 by direct computation
as in [5]. Instead, we get continuity by considering

O(L) = Hd(2
L)−Hd(2

L − 1) = 2L
(
ψd(0)− ψd

({
log2

(
1− 1

2L

)}))
+O(L).

Comparing with Theorem 9, we see that (7.1) implies that λ(Wd) = 1/6 for d ∈ {1, x}.
Since λ(W0 ∪W1 ∪Wx) = 1 we must have λ(W0) = 2/3.

We summarize this result in the following theorem.

Theorem 17. Let D = {0, 1, x} be a NADS, d ∈ {1, x} and N be a positive integer. Then
the number of occurrences of the digit d in the D-NAFS of the integers 0, . . . , N−1 equals

Hd(N) =
1

6
N log2N +Nψd({log2N}) +O(N log2 ρ(M2)),

where ψd is a 1-periodic continuous function and ρ(M2) < 2 is the spectral radius of the
adjacency matrix of the auxiliary automaton described in Section 6.

Moreover, the Lebesgue measures of the sets Wd described in Theorem 10 equal

λ(W1) = λ(Wx) =
1

6
, λ(W0) =

2

3
.

8. Non-Optimality

ForD = {0, 1,−1}, theD-NAF of n has minimal Hamming weight amongst all {0, 1,−1}-
expansions of n, cf. Reitwiesner [15], where the Hamming weight c(η) of an expansion
η ∈ D

�
0 equals the number of nonzero digits #{j : ηj 6= 0}.

For x ≤ −5, this is no longer the case:

Theorem 18. Let D = {0, 1, x} be a NADS. Then the following two conditions are equiv-
alent:
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• For every positive integer n, the Hamming weight of the D-NAF of n is minimum
amongst all D-expansions of n.
• x ∈ {−1, 3}.

We first consider the case x = 3 and give an algorithmic proof, which can also be used
in more general situations. For instance, the case x = −1 follows along the same lines.

Lemma 19. The {0, 1, 3}-NAF is the {0, 1, 3}-expansion of minimal Hamming weight.

Proof of the lemma. We consider the transducer T̃ (cf. Figure 13). We introduce weights

I0

1

3

2

4 5

0|ε

1|ε
3|ε

0|0

1|0

3|0

0|1, 1|3
3|3

0|3
1|1

3|1

0|0
1|0

3|0
1|0

0|0
3|0

0|1
, 1
|3

3|3

Figure 13. Transducer T̃ calculating a {0, 1, 3}-NAF of n from any
{0, 1, 3}-expansion of n from right to left.

for the transitions:

w(i
d|o−→ j) := c(d)− c(o),

where c denotes the Hamming weight and c(ε) = 0. If we have a successful path I d| �−−→ 0,
the weight of this path equals c(d)− c(η). We calculate the shortest path from I to 0 in
this weighted digraph using the Ford-Bellman algorithm (cf. Cook et al. [1]). It turns out
that the shortest path has weight 0, i.e. c(d)− c(η) ≥ 0, as requested. �

Remark 20. We note that the above proof of Lemma 19 also yields a complete description
of all {0, 1, 3}-expansions of minimal weight: The Ford-Bellman algorithm calculates a
feasible potential π : V → Z, where π(i) is the weight of a shortest path from I to i. In
our case, we have

i I 0 1 2 3 4 5,
π(i) 0 0 1 1 1 1 2.

Thus if we have π(i) + w(i
d|o−→ j) > π(j) for some transition, the transition corresponds

to an actual gain when modifying the given representation d to the D-NAF. Therefore,
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we remove all those transitions and all output labels and get an automaton which accepts
minimal {0, 1, 3}-expansions, see Figure 14. In this figure, we also identified states 0 and
I, since they only differed in the output labels of the transitions leaving them.

0

1

3

2

4 5

0

1

3

0
3

0

1

3

0

0

3

0

Figure 14. Automaton accepting all binary {0, 1, 3}-expansions of minimal
Hamming weight.

If we use the same approach for x = −1, we get the transducer in Figure 15 and the
automaton in Figure 16, respectively. The transducer corresponds to the algorithm due to
Jedwab and Mitchell [9], the automaton to the syntactical rules described in Heuberger [?].

Proof of Theorem 18. By Lemma 19 and Reitwiesner [15], we only have to consider the
case x ≤ −5. If |x|+ 3 = 2g for some g ≥ 4, we consider n = 2g+1 + 7. We have

n = 1 · 22g + x · 2g + 1 · 22 + x · 20,(8.1)

n = 1 · 2g+2 + x · 2 + 1.(8.2)

Both are {0, 1, x}-expansions, (8.1) is the D-NAF with Hamming weight 4, whereas (8.2)
is an expansion of Hamming weight 3.

If x = −5, we have

23 = value(1005̄05̄05̄),(8.3)

23 = value( 10005̄1).(8.4)

The first expansion (8.3) is the D-NAF, again with Hamming weight 4, the second expan-
sion has Hamming weight 3.

Next, if |x|+3 is not a power of 2, we consider n = 3. We have η0(3) = x, η1(3) = 0 and
r2(3) = (3+ |x|)/4. By assumption, (3+ |x|)/4 is not a power of 2. Since (3+ |x|)/4 < |x|,
we conclude that any D-expansion of (3+ |x|)/4 has Hamming weight at least 2, therefore,
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I0

1

−1

2

−2

0|ε

1|ε
1|ε

0|0

1|0

1|0

0|1, 1|1

1|1

0|1
, 1
|1

1|1

1|0

0|01|0

1|0

0|01|0

Figure 15. Transducer T̃ calculating a {0, 1,−1}-NAF of n from any
{0, 1,−1}-expansion of n from right to left.

0

1

−1

2

−2
0

1

1

0

1

0

1

0

0

Figure 16. Automaton accepting all binary {0, 1,−1}-expansions of mini-
mal Hamming weight.

the D-NAF of 3 has Hamming weight at least 3. However, the standard binary expansion
3 = value(11) has lower Hamming weight. �

9. Addition of 1

The transducer for calculating the addition of 1 for x = −5 is shown in Figure 17.
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1 2

3

4

5

6

05̄|00

0|ε
,0

1|0

0|ε

01
|00

05̄|0

0
1|0

05̄

05̄
|05̄

0|01

0|05̄

0
1|0

0
1

0̄5|01

0|0, 01|01, 05̄|05̄

0|0
1
,0

5̄|0
05̄

01|05̄

Figure 17. Add +1 or −1 in {0, 1,−5}-NAF from right to left. Start node
is 1 for addition of +1 and 2 for addition of −1

10. Digit formulæ

It was proved in [14, 7] that for the digit set {0, 1,−1}, the formula

n =
∑

k≥0

(⌊
n

2k+2
+

5

6

⌋
−
⌊

n

2k+2
+

4

6

⌋
−
⌊

n

2k+2
+

2

6

⌋
+

⌊
n

2k+2
+

1

6

⌋)
2k

produces the NAF, i. e., that if we write the NAF of n as . . . a2(n)a1(n)a0(n), the digits
are given by

ak(n) =

⌊
n

2k+2
+

5

6

⌋
−
⌊

n

2k+2
+

4

6

⌋
−
⌊

n

2k+2
+

2

6

⌋
+

⌊
n

2k+2
+

1

6

⌋
.

In the instance {0, 1,−5}, there is a similar formula, viz.

ak(n) =

⌊
n

2k+2
+

23

24

⌋
−
⌊

n

2k+2
+

1

24

⌋
− 6

⌊
n

2k+2
+

16

24

⌋
+ 6

⌊
n

2k+2
+

4

24

⌋
.

If ak(n) ∈ {1,−5}, this formula produces the right result, but it sometimes happens that
if ak(n) = 0, the formula gives either 1 or −5.

For other systems like {1, 0,−13} etc. not even such a formula exists.
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