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t. The analogy between 
ombinatorial optimization and statisti
alme
hani
s has proven to be a fruitful obje
t of study. Simulated annealing,a metaheuristi
 for 
ombinatorial optimization problems, is based on thisanalogy.In this paper we use the statisti
al me
hani
s formalism based on the abovementioned analogy to analyze the asymptoti
 behavior of a spe
ial 
lass of
ombinatorial optimization problems 
hara
terized by a 
ombinatorial 
ondi-tions whi
h is well known in the literature. Our result is analogous to resultsof other authors derived by purely probabilisti
 means: Under natural prob-abilisti
 
onditions on the 
oeÆ
ients of the problem, the ratio between theoptimal value and the size of a feasible solution approa
hes almost surely theexpe
ted value of the 
oeÆ
ients, as the size of the problem tends to in�nity.Our proof shows 
learly why the above mentioned 
ombinatorial 
ondition,whi
h 
hara
terizes the 
lass of investigated problems, is essential.Keywords: 
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oin
ides with the membership in the 
lass of NP-hard problems whi
h implies thatmost probably the 
onsidered problem is not solvable by any polynomial time algorithm.Su
h diÆ
ulties in solving large problems are one more reason why the asymptoti
behavior is a topi
 of interest. Generally we are interested in the asymptoti
 behavior ofthe optimal value of a 
ombinatorial optimization problem as its size tends to in�nity,under the assumption that the 
oeÆ
ients of the problem are random variables and ful�ll
ertain (probabilisti
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 behavior of di�erent problems, e.g. the linearassignment problem (LAP), the quadrati
 assignment problem (QAP), the traveling�This resear
h has been partially supported by the Spezialfors
hungsberei
h F 003 "Optimierung undKontrolle" / Projektberei
h Diskrete Optimierung.yGraz University of Te
hnology, Institut f�ur Mathematik B, Steyrergasse 30, A-8010 Graz, Austria.Email: falbre
her,burkard,
elag�opt.math.tu-graz.a
.at1



An asymptoti
al study by means of statisti
al me
hani
s 2salesman problem (TSP), are available in the literature. As illustrative examples wedes
ribe brie
y some results on the LAP and the QAP, two problems whi
h show a
ompletely di�erent asymptoti
 behavior. In the linear assignment problem of size nwe are given an n � n matrix C = (
ij) and look for a permutation � of 1; 2; : : : ; n,whi
h minimizes Pni=1 
i�(i). A number of results on the asymptoti
 behavior of theLAP has been derived in the 80's and early 90's. In the 
ase that the 
oeÆ
ients
ij are independent random variables uniformly distributed on [0; 1℄, Olin [14℄ andKarp [11℄, respe
tively, showed that the optimal value of the LAP is bounded andlies between 1.51 and 2. Aldous [2℄ re
ently proved that the optimal value is equal to�26 � o(1) � �26 � 1:645, whi
h was already suggested by M�ezard and Parisi [13℄ (seealso [9℄). Thus the optimal value is independent from the size of the problem.A 
ompletely di�erent asymptoti
 behavior is shown by the quadrati
 assignment prob-lem (QAP). In the Koopmans-Be
kman QAP of size n we are given two n� n matri
esA = (aij) and B = (bij) and look for a permutation � of 1; 2; : : : ; n whi
h minimizesg(�) = Pni;j=1 a�(i)�(j)bij. The optimal value g(��) of the QAP depends on the sizen of the problem: g(��) = �(n2). Moreover, as the size of the problem approa
hesin�nity, the value of the obje
tive fun
tion yielded by any solution gets arbitrarily 
loseto the optimal value. In 1982, Burkard and Fin
ke studied the asymptoti
 probabilisti
behavior of quadrati
 (sum) assignment problems of the Koopmans-Be
kmann form(see [4℄). Under 
ertain probabilisti
 
onstraints on the 
oeÆ
ients of the problem, theyhave shown the following result: (BF1) The relative di�eren
e between the worst valueand the optimal value of the obje
tive fun
tion tends to zero with probability tending toone as the size of the problem tends to in�nity.An analogous result holds for the bottlene
k QAP, see Burkard and Fin
ke [5℄.Under similar probabilisti
 
onstraints on the 
oeÆ
ients of the problem Frenk,Houweninge and Rinnooy Kan derived the following result for the QAP: (FHR) Theobje
tive fun
tion value 
an almost surely be written asymptoti
ally as a fun
tion of thesize of the problem and of the expe
ted value of the 
oeÆ
ients of the problem. Whenapplied to the QAP, FHR is stronger than BF1, sin
e FHR implies the following prop-erty: (BF1') The ratio between the worst value and the optimal value of the obje
tivefun
tion approa
hes 1 almost surely as the size of the problem tends to in�nity.Under weaker probabilisti
 
onstraints, Rhee derives an analogous but sharper result forthe QAP (see [15℄). In a later work, Rhee 
onsiders the di�eren
e between the obje
tivefun
tion and the fun
tion whi
h approximates it asymptoti
ally and almost surely, asstated in FHR. She estimates the expe
ted value of this di�eren
e (see [16℄).In 1985, Burkard and Fin
ke generalize and strengthen the results of [4℄ to a whole 
lass of
ombinatorial optimization problems. Problems belonging to this 
lass are among othersquadrati
 assignment problems (either sum or bottlene
k version) as well as 
ertain
ombinatorial and graph theoreti
al optimization problems (see [6℄). For su
h problemsthe following result holds: (BF2) With probability tending to one the ratio between theworst value and the optimal value of the obje
tive fun
tion approa
hes 1 as the size ofthe problem tends to in�nity.Under slightly more restri
tive probabilisti
 
onditions Szpankowski [18℄ shows that thefollowing property holds for a whole 
lass of 
ombinatorial optimization problems: (S)The ratio between the best and the worst value of the obje
tive fun
tion tends almost
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s 3surely to 1 as the size of the problem approa
hes in�nity. The 
lass of problems 
on-sidered by Szpankowski is 
hara
terized by the same 
ombinatorial 
ondition (
f. (10))whi
h 
hara
terizes the 
lass of problems investigated by Burkard and Fin
ke [6℄.It is remarkable that all results mentioned above are derived by using purely probabilisti
te
hniques, although the 
lass of problems to whi
h these results apply is de�ned interms of a 
ombinatorial stru
tural 
ondition. Re
all, for example, that the asymptoti
behavior of the QAP and the LAP (or the TSP) are essentially di�erent simply be
auseof their di�erent 
ombinatorial stru
ture (see e.g. [6℄).In 1986, Bonomi and Lutton used a statisti
al me
hani
s formalism to analyze theasymptoti
 behavior of the QAP (see [3℄). Bonomi and Lutton applied, however, aninvalid 
onvexity argument to ex
hange the limit and the derivative for a sequen
e offun
tions over [0;+1) (see [3℄, page 297, equalities (13) and (14) 1), the ex
hange stepbeing 
ru
ial for the whole proof.In this paper we show that the statisti
al me
hani
s approa
h 
an be applied to analyzethe asymptoti
 behavior of a whole 
lass of 
ombinatorial optimization problems whi
h
ontains QAP as an element. This 
lass of problems is similar to the 
lasses of problemsinvestigated by Burkard and Fin
ke [6℄ and Szpankowski [18℄. Its elements show thefollowing asymptoti
 behavior: the ratio between the optimal value and the size of afeasible solution approa
hes the expe
ted value of the 
oeÆ
ients of the problem almostsurely, as the size of the problem tends to in�nity. An interesting feature of this approa
his that it makes 
lear the importan
e of a 
ombinatorial 
ondition whi
h 
hara
terizesthe investigated 
lass of problems and is ful�lled by all problems whi
h are 
urrentlyknown to show the above mentioned asymptoti
 behavior, e.g. the quadrati
 assignmentproblem. This 
ondition says that the ratio between the logarithm of the number offeasible solutions and the 
ardinality of a feasible solution tends to 0 as the size of theproblem tends to in�nity.The paper is organized as follows. In Se
tion 2 the analogy between 
ombinatorialoptimization and statisti
al me
hani
s is des
ribed in some detail and the statisti
alme
hani
s formalism is introdu
ed. In Se
tion 3 we introdu
e the 
lass of 
ombinatorialoptimization problems we are dealing with and formulate our main result. Then, in thenext se
tion the main result is proved. The proof involves six lemmata and parts of itare quite te
hni
al. Finally, in Se
tion 5 we dis
uss the nature of the 
onditions imposedon the problems we deal with, and formulate some open questions and general remarks.2 Thermodynami
s and Combinatorial OptimizationIn 
ombinatorial optimization we are interested in 
hoosing a solution whi
h minimizesthe value of a 
ertain obje
tive fun
tion (or maximizes it, in the 
ase of a maximizationproblem) among a �nite number of feasible solutions. More formally a generi
 
ombi-natorial optimization problem P may be de�ned as follows. Let a ground set E and a
ost fun
tion f : E ! R+ be given. A feasible solution S is a subset of the ground setE and the set of feasible solutions is denoted by S. By means of the 
ost fun
tion f weasso
iate 
osts to the feasible solutions. One possibility is to de�ne an obje
tive fun
tion1It is not diÆ
ult to give examples of sequen
es of real fun
tions whi
h are 
onvex on [0;+1), wherethe derivative and the limit 
an not be ex
hanged in a neighborhood of 0.
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s 4F : S ! R+, where F (S) is given byF (S) =Xe2S f(e) (1)for all S 2 S. Su
h an obje
tive fun
tion is often 
alled a sum obje
tive fun
tion. The(sum) problem 
an then be formulated as the task of �ndingminS2S F (S) : (2)Let us turn now to thermodynami
s. A thermodynami
al system may show di�erentstates whi
h are 
hara
terized by di�erent values of energy. In thermodynami
s we areoften interested in low-energy-states of the 
onsidered system, just as we are interested infeasible solutions with a small value of the obje
tive fun
tion in a minimization problem.More pre
isely, an analogy between 
ombinatorial optimization and thermodynami
s 
anbe built along the following two lines:� Feasible solutions of a 
ombinatorial optimization problem are analogous to statesof a physi
al system.� The obje
tive fun
tion value 
orresponding to a feasible solution is analogous tothe energy of the 
orresponding state.A

ording to statisti
al me
hani
s the thermal equilibrium of a thermodynami
al systemis 
hara
terized by the so-
alled Boltzmann distribution, where the probability that thesystem is at a state i with energy Ei at temperature T is given by1Q(T ) exp( �EikB � T ) ; (3)with kB being a physi
al 
onstant known as Boltzmann 
onstant , and Q(T ) being theso 
alled partition fun
tion de�ned byQ(T ) :=Xj exp( �EjkB � T ) : (4)In the last equality the summation extends over all possible states of the system.The statisti
al me
hani
s formalism 
an be used to investigate the asymptoti
 behaviorof 
ombinatorial optimization problems. The �rst authors who argued on the use of thisformalism to analyze the asymptoti
 behavior of the quadrati
 assignment problem wereBonomi and Lutton [3℄. We apply this approa
h to a generi
 
ombinatorial optimizationproblem as introdu
ed in the beginning of this se
tion.Our probabilisti
 model looks as follows. A probability Pr(S) is assigned to ea
h feasiblesolution of the problem S 2 S byPr(S) = exp (�F (S) � �)Q(�) ; (5)
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s 5where � is a parameter whi
h simulates the re
ipro
al of the temperature, and Q(�) isthe partition fun
tion de�ned analogously as in the Boltzmann distribution byQ(�) :=XS2S exp (�F (S) � �) : (6)Denote by hF (S)i(�) the expe
ted value of the obje
tive fun
tion F (S) in the aboveprobabilisti
 model, for �xed re
ipro
al of the temperature equal to �. hF (S)i(�) isgiven by the following equality:hF (S)i(�) = 1Q(�) XS2S F (S) exp (�F (S) � �) : (7)It 
an easily be seen that the right-hand side of the above equality is equal to thederivative of � lnQ(�) with respe
t to �:hF (S)i(�) = �(lnQ(�))0: (8)Further, it is well known and easily seen that the following relationship between thevarian
e �F (S)(�) of the obje
tive fun
tion F (S) (in the probabilisti
 model introdu
edabove) and the se
ond derivative of lnQ(�) holds:�F (S)(�) = D[F (S)� hF (S)i(�)℄2 E = (lnQ(�))00: (9)3 The main resultIn this se
tion we formulate our main result 
on
erning a spe
i�
 asymptoti
 behavior of
ombinatorial optimization problems, and introdu
e the probabilisti
 and 
ombinatorial
onditions to be imposed to the 
ombinatorial problem so as to guarantee that spe
i�
behavior.Consider a sequen
e Pn, n 2 N, of instan
es of a generi
 
ombinatorial optimizationproblem, where Pn is the instan
e of size n (whatever this means). The ground set, theset of feasible solutions, the 
ost fun
tion, and the obje
tive fun
tion of problem Pn aredenoted by En, Sn, fn, and Fn, respe
tively. Denote by F �n , S�n, the optimal value andan optimal solution of problem Pn, respe
tively:F �n = minS2Sn Fn(S) = Fn(S�n):We assume that the 
osts fn(e), e 2 En, n 2 N, are random variables, and that we areinterested in the asymptoti
 behavior of F �n as n tends to in�nity. We will show thatunder 
ertain 
ombinatorial and probabilisti
 
onditions formulated below, the ratioF �n=jS�nj almost surely approa
hes the expe
ted value of the 
ost 
oeÆ
ients fn(e) as thesize n of the problem tends to in�nity.Assume that our 
ombinatorial optimization problem has the following properties:(P1) For ea
h n 2 N, all feasible solutions S 2 Sn have the same 
ardinality sn.(P2) For some �xed n 2 N, let �n(e) be the number of feasible solutions S 2 Sn su
hthat e 2 S. We suppose that there exists a 
onstant �n su
h that �n(e) = �n forall e 2 En.
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s 6(P3) The 
osts fn(e), n 2 N, e 2 En, are random variables identi
ally and indepen-dently distributed on [0;M ℄, where M > 0.(P4) The 
ardinality of the set of feasible solutions jSnj and the 
ardinality of thefeasible solutions sn tend to in�nity as n tends to in�nity. Furthermorelimn!1 ln jSnjsn = 0: (10)Let us denote by E := E (fn(e)) and D := Var (fn(e)) the (
ommon) expe
ted valueand varian
e of the random variables fn(e), n 2 N, e 2 En, respe
tively. We will showthat limn!1 F �nsn = E, almost surely. Summarizing, our main result is given by the followingtheorem:Theorem 3.1 Let a 
ombinatorial optimization problem be given as in (2) and let theproperties (P1)-(P4) be ful�lled. Then F �nsn 
onverges almost surely (brie
y a.s.) to E asn tends to in�nity, i.e. Pr� limn!1 F �nsn = E� = 1: (11)4 Proof of the main resultThe proof of Theorem 3.1 is based on the following lemmata:Lemma 4.1 Under the 
onditions of Theorem 3.1, the expe
ted value of the obje
tivefun
tion Fn(S) for � = 0 (a

ording to the distribution on Sn de�ned by (5)) ful�lls thefollowing property limn!1 hFn(S)i(0)sn = E a:s:Proof. By applying equality (7) for � = 0 we gethFn(S)i(0) = XS2Sn Fn(S) � 1jSnj :Considering property (P2), the last equality 
an be transformed as follows:hFn(S)i(0) = 1jSnj � XS2SnXe2S fn(e) = 1jSnj � Xe2En �n � fn(e) = �njSnj Xe2En fn(e):From (P2) we have jSnj � sn = jEnj � �n, and by substitution we obtain:hFn(S)i(0)sn = Pe2En fn(e)jEnj : (12)Sin
e 
ondition (P3) is satis�ed, the varian
e D of the 
ost 
oeÆ
ients fn(e) is bounded,and the strong law of large numbers applies:Pr� limn!1 hFn(S)i(0)sn = E� = 1: (13)
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s 7Lemma 4.2 Under the 
onditions of Theorem 3.1, there exists a 
onvergent subsequen
eF �nmsnm of the sequen
e F �nsn with limit equal to l.Proof. Sin
e ���Fn(S�n)sn ��� � Msnsn = M , the sequen
e F �nsn is bounded. Therefore, it has atleast one 
luster point, whi
h we denote by l, and a subsequen
e F �nmsnm 
onverging to l:l := limm!1 F �nmsnm : (14)If S�n is an optimal solution of problem Pn, the following inequalities hold for the partitionfun
tion Qn(�): exp (�Fn(S�n) � �) � Qn(�) � jSnj � exp (�Fn(S�n) � �) (15)�F �n � � � lnQn(�) � ln jSnj � F �n � �: (16)Let us now introdu
e the 
ontinuous and di�erentiable fun
tions Gn(�) = lnQn(�)sn , de-�ned on [0;1), for all n 2 N. Dividing both sides of (16) by sn we get�� � F �nsn � Gn(�) � ln jSnjsn � � � F �nsn : (17)Lemma 4.3 Under the 
onditions of Theorem 3.1, for ea
h l de�ned in (14), thereexists a subsequen
e Gnk(�) of the sequen
e of fun
tions Gn(�), su
h that Gnk(�) andthe sequen
e of its derivatives G0nk(�) 
onverge uniformly in [�;+1) for any � > 0, andlimk!1Gnk(�) = �� � l ; (18)limk!1G0nk(�) = �l : (19)Proof. We apply the following well known result (see e.g. [17℄). Let a sequen
e ofdi�erentiable fun
tions Gnm , pointwise 
onvergent on an interval [�;+1), be given.Assume that the sequen
e of derivatives G0nm is equi
ontinuous and uniformly boundedon [�;1). Then, there exists a subsequen
e Gnk of Gnm su
h that both sequen
es Gnkand G0nk are uniformly 
onvergent on [�;1).Note that the pointwise 
onvergen
e of Gnm(�) follows from Lemma 4.2, (10) and (17).Thus, in order to prove the lemma it is suÆ
ient to show that the sequen
e of fun
tionsG0nm is uniformly bounded and equi
ontinuous on [�;1).First, let us show that the sequen
e of derivatives G0n is uniformly bounded on [�;+1).Remark that 8S 2 Sn the following equality holds:Fn(S) =Xe2S fn(e) �M � jSj =M � sn: (20)
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s 8The following inequalities show that G0n(�) is uniformly bounded:��G0n(�)�� � PS2Sn jFn(S)j � exp(�� � Fn(S))sn �Qn(�) � sn �M � PS2Sn exp(�� � Fn(S))sn �Qn(�) =M:Se
ondly, we show that the sequen
e of fun
tions G0n is equi
ontinuous on [�;+1), i.e.8" > 0 9 Æ > 0, su
h that 8�1; �2 2 [�;+1) and 8n 2 Nj�1 � �2j < Æ ) jG0n(�1)�G0n(�2)j � "holds.Let us evaluate the di�eren
e jG0n(�1)�G0n(�2)j, for � � �1 � �2 and n 2 N.jG0n(�1)�G0n(�2)j � XS2Sn Fn(S)sn � ����exp(��1 � Fn(S))Qn(�1) � exp(��2 � Fn(S))Qn(�2) �����M � XS2Sn exp(��1 � Fn(S))Qn(�1) � ����1� Qn(�1) � exp(��2 � Fn(S))Qn(�2) � exp(��1 � Fn(S)) ���� : (21)Next, we show that there exists a T > 0 su
h that the following inequality holds for allS0 2 Sn and for all n 2 N:����1� Qn(�1) � exp(�1 � Fn(S0))Qn(�2) � exp(�2 � Fn(S0)) ���� � T � (�2 � �1) : (22)The following elementary transformations prove the existen
e of su
h a T . Assumew.l.o.g. that������ XS : Fn(S)>Fn(S0) exp��2(Fn(S0)� Fn(S))� � XS : Fn(S)>Fn(S0) exp��1(Fn(S0)� Fn(S))������� ������� XS : Fn(S)<Fn(S0) exp��2(Fn(S0)� Fn(S))� � XS : Fn(S)<Fn(S0) exp��1(Fn(S0)� Fn(S))�������(The other 
ase 
an be handled analogously.) Then we have����1� Qn(�1) � exp(�1 � Fn(S0))Qn(�2) � exp(�2 � Fn(S0)) ���� = �������1� 1 + PS2Sn:S 6=S0 exp(�1 � (Fn(S0)� Fn(S))1 + PS2Sn:S 6=S0 exp(�2 � (Fn(S0)� Fn(S)) ������� ������ PS : Fn(S)>Fn(S0) h exp��2 � (Fn(S0)� Fn(S))�� exp��1 � (Fn(S0)� Fn(S))�i�����PS : Fn(S)>Fn(S0) exp��2 � (Fn(S0)� Fn(S))� =
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s 9����� PS : Fn(S)>Fn(S0) exp��1 � (Fn(S0)� Fn(S))�h exp�(�2 � �1) � (Fn(S0)� Fn(S))� � 1i�����PS : Fn(S)>Fn(S0) exp��2 � (Fn(S0)� Fn(S))� �
� ����� PS : Fn(S)>Fn(S0) h exp�(�2 � �1) � (Fn(S0)� Fn(S))�� 1i�����PS : Fn(S)>Fn(S0) exp��2 � (Fn(S0)� Fn(S))� :We now show that������ XS : Fn(S)>Fn(S0) h exp�(�2 � �1) � (Fn(S0)� Fn(S))�� 1i������ �1� � (�2 � �1) � XS : Fn(S)>Fn(S0) exp h�2 � (Fn(S0)� Fn(S))i: (23)Indeed, inequality (23) follows from the following inequalities whi
h hold for all S 2 Snsu
h that Fn(S) � Fn(S0).��� exp�(�2 � �1) � (Fn(S0)� Fn(S))� � 1��� � (�2 � �1) � 1Xi=1 (�2 � �1)i�1 � (Fn(S)� Fn(S0))ii!� (�2 � �1) � 1� � 1Xi=1 (�2)i � (Fn(S)� Fn(S0))ii!� (�2 � �1) � 1� � exp h�2 � (Fn(S)� Fn(S0))i:By putting things together we get (22) with T := 1� .We return at (21) and obtain:��G0n(�1)�G0n(�2)�� �M � 1� � (�2 � �1) � XS2Sn exp(��1 � Fn(S))Qn(�1) =M � 1� � (�2 � �1);from whi
h the equi
ontinuity of G0n on [�;1) obviously follows.Due to (10), (14) and (17) we have limk!1Gnk(�) = ��l. Then, due to the uniform
onvergen
e of the above sequen
e together with the sequen
e of its derivatives we getlimk!1G0nk(�) = � limk!1Gnk(�)�0 = �l :



An asymptoti
al study by means of statisti
al me
hani
s 10Lemma 4.4 E � l, where E and l are de�ned above.Proof. Consider the expe
ted value E(Fn(S)) of the obje
tive fun
tion value of problemPn, S 2 Sn (with respe
t to the distribution of the random variables fn(e); e 2 En). Wehave E (Fn(S)) = snE and hen
e E (Fn (S)sn ) = E. This implies that F �nsn � E 8n 2 N.Then, sin
e l is de�ned as the limit of a subsequen
e of F �nsn , we have l � E.At this point there are two possibilities: either l = E and E is the (unique) limit of F �nsn ,or there exists a 
luster point l of F �nsn su
h that l < E. In the �rst 
ase the main resultfollows immediately. We show that the se
ond 
ase almost surely 
annot happen.Assume that l < E throughout the rest of this se
tion. Clearly, in this 
ase the 
onver-gen
e of Gnk and G0nk is not uniform over the whole [0;1) (
f. Lemma 4.1). A

ordingto Lemma 4.3, however, limk!1G0nk(�) = �l uniformly on [�;1) for ea
h � > 0, andlimk!1G0nk(0) = �E < �l, due to Lemma 4.1. Under these 
onditions, for all K > 0and for all m 2 N there must be some �0 � 0 and some k0 2 N, k0 > m, su
h thatG00nk0 (�0) � K. Indeed, given a K > 0, we 
hoose " = (E� l)=4 and � = E�l2K , and applythe above mentioned 
onvergen
e result on [�;1) and at � = 0. For k0 large enough wehave G0nk0 (�) > �l � " and G0nk0 (0) < �E + ". Thus, by the mean value theorem,�G00nk0 (�0) = G0nk0 (�) �G0nk0 (0) > E � l � 2" = E � l2 ;for some �0 2 [0; �℄. The last equality implies that G00nk0 (�0) � K. Thus the se
ondderivatives G00nk(�) are unbounded as k approa
hes in�nity and � approa
hes 0. We showthat almost surely this 
annot be the 
ase, be
ause: a) The third derivative G000nk(�) isalmost surely non-positive for � � 0 and b) the sequen
e of se
ond derivatives G00n(0)is almost surely bounded. Combining a) and b) with the nonnegativity of the se
ondderivative G00n(�) = �Fn(S)(�)sn (
f. (9)) for all n 2 N and � � 0, yields the desired
ontradi
tion. The fa
ts a) and b) are proven in the next two lemmata.Lemma 4.5 The third derivative G000nk(�) is almost surely non-positive for k � k0, � � 0,where k0 is some �xed natural number.Proof. We haveG000nk(�) = 1snk [�Fnk(S)(�)℄0 = 1snk 24 XS2Snk hFnk(S)� hFnki(�)i2 e�Fnk (S)�Qnk(�) 350 ;where h�i(�) denotes the expe
tation w.r.t. the Boltzmann distribution with parameter�. It follows thatG000nk(�) = 1snk 24 XS2Snk 2�Fnk(S)� hFnki(�)�e�Fnk (S)�Qnk(�) �hF 2nki(�)Qnk(�) � hFnki2(�)�++ XS2Snk hFnk(S)� hFnki(�)i2�� Fnk(S)e�Fnk (S)�Qnk(�) + hFnki(�)e�Fnk (S)�Qnk(�) �35 =
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s 11= 1snk �0 � XS2Snk �Fnk(S) � hFnki(�)�3 e�Fnk (S)�Qnk(�) � = �D�Fnk � hFnki(�)�3E(�)snk :Hen
e it is enough to show that Fnk(S)� hFnki(�) � 0; 8 � � 0; almost surely. Indeed,for all S 2 Snk , Fnk(S) = Pe2S fnk(e) is the sum of snk independent and identi
allydistributed random variables with E (fnk (e)) = E. Thus, a

ording to the strong law oflarge numbers, we have Pr� limk!1 ����Fnk(S)snk �E���� = 0� = 1 :At the same time, we have for all � > 0Pr� limk!1 ����hFnki(�)snk � l���� = 0� = 1 ;due to the uniform 
onvergen
e of �G0nk(�) = hFnk i(�)snk to l on any interval [�;1), � > 0.The inequality E > l, together with Lemma 4.1 for the 
ase � = 0, thus implies thatFnk(S)� hFnki(�) � 0 a:s: for all � � 0, as desired.Lemma 4.6 The sequen
e of the se
ond derivatives G00n(0) is almost surely bounded.Proof. Sin
e G00n(0) = �Fn(S)(0)sn � 0, we have by Markov's inequalityPr �G00n(0) > K� � E�G00n(0)�Kfor every K > 0, where E denotes the expe
tation w.r.t. the distribution of the randomvariables fn(e); e 2 En. Now we haveE�G00n(0)� = E 0� 1sn jSnj XS2Sn F 2n(S)� 1sn jSnj2  XS2Sn Fn(S)!21A= 1sn jSnj E 0�XS2Sn Xe2S fn(e)!21A� 1sn jSnj2 E  XS2SnXe2S fn(e)!2= 1sn E  Xe2S fn(e)!2 � �2nsn jSnj2 E  Xe2En fn(e)!2= 1sn �snD + s2nE2�� �2nsn jSnj2 �jEnjD + jEnj2E2�= D�1� snjEnj� � D;where we have used the equality �njEnj = snjSnj. Thus, for any K > 0,Pr �G00n(0) > K� � DK :Sin
e D = Var (fn(e)) is �nite, it follows that G00n(0) is almost surely bounded.
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ond derivatives G00nk almost surely have to be boundedand unbounded at the same time. This implies that l < E 
an not happen. Thus l = Ea.s. and Theorem 3.1 holds.Remark: The proof te
hnique 
an also be interpreted as follows: Sin
e hFni(�)sn =jG0n(�)j � M is bounded, for ea
h � � 0 there exists a 
onvergent subsequen
e su
hthat limk!1 hFnk i(�)snk (�) = l(�). In the proof it is shown that l(�) does not depend on �and l = E almost surely, from whi
h it follows thatlimn!1 hFni(�)sn = E almost surely for any � 2 [0;1): (24)Re
all that hFni(�) denotes the expe
tation of Fn(S) w.r.t. the Boltzmann weight withparameter � assigned to ea
h admissible solution S 2 Sn. The right hand side of (24)being independent of �, Theorem 3.1 
an now be dedu
ed for � ! 1, sin
e for anyS0 2 Sn we have (see e.g. Aarts and Korst [1℄)lim�!1Pr(S0) = lim�!1 e�Fn(S0)�Qn(�) = lim�!1 e�Fn(S0)�PS2Sn e�Fn(S)�= lim�!1 e��(Fn(S0)�F �n)jS�nj+ PS2SnnS�n e��(Fn(S)�F �n) = � 1jS�nj for S0 2 S�n0 for S0 2 Sn n S�n;where S�n � Sn is the set of optimal solutions of problem Pn, and thus for all n 2 N wehave lim�!1hFni(�) = F �n .5 Dis
ussion and open questionsLet us shortly dis
uss 
onditions (P1)-(P4). (P3) is a probabilisti
 
ondition on the
oeÆ
ients of the problem and we will 
ome ba
k to that later on. Condition (P4)is a 
ru
ial, purely 
ombinatorial 
ondition, whi
h is used in Lemma 4.3 to show thepointwise 
onvergen
e of Gnk(�) and this is the simplest kind of 
onvergen
e whi
h hasto hold in order to get through with the other lemmata. A ni
e feature of our proof ofthe main result is that is shows expli
itly the importan
e of 
ondition (P4). Note that(P4) is essential for deriving any of the results existing in the literature on problemswhi
h show an asymptoti
 behavior similar to the one des
ribed by Theorem 3.1 (e.g.results BF1, BF2 and FHR).Conditions (P1) and (P2) des
ribe the 
ombinatorial stru
ture of the set of feasiblesolutions. (P1) 
hara
terizes the feasible solutions from a quantitative point of viewsaying that all feasible solutions have the same 
ardinality. (P2) des
ribes the set offeasible solutions from a stru
tural point of view showing how often an element of theground set appears in some feasible solution. The fa
t that this frequen
y index is
onstant among di�erent elements from the ground set means that the feasible solutionsare distributed somehow uniformly in the ground set. It is an open question whether
ondition (P1) 
an be dropped or substituted by a weaker one. Szpankowski [18℄ showedin his purely probabilisti
 proof of Theorem 3.1, that (P2) 
an be dropped, if in additionF �n is a nonin
reasing fun
tion of n and jSn+1j � jSnj for all n 2 N.
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ombinatorial optimization problems.(P4) is a more restri
tive 
ondition and it is essential for the 
orre
tness of the mainresult. As an illustrating example 
onsider that the QAP ful�lls all these 
onditionswhereas the linear assignment problem (LAP) ful�lls only (P1) and (P2) but not (P4).Indeed, the QAP of size n 
an be formulated as a general 
ombinatorial optimizationproblem with a ground setEn = f(i; j; k; l) : 1 � i; j; k; l � n su
h that i = j if and only if k = lg ;feasible solutions S� = f(i; j; �(i); �(j)) : 1 � i; j � ngfor � being a permutation of 1; 2; : : : ; n, and the set of feasible solutionsSn = fS� : � is a permutation of 1; 2; : : : ; ng ;(see also [6℄). Clearly jEnj = O(n4), jS�j = n2 for any permutation �, jSnj = n!, and
ondition (P4) is ful�lled, sin
e ln(n!)n2 = o(1). Ea
h element (i; j; k; l) of the ground setappears in (n�2)! feasible solutions, namely in all S� 
orresponding to some permutation� for whi
h �(i) = k, �(j) = l. Thus �n = (n� 2)!.For the linear assignment problem of size n the ground set �En is given by �En =f(i; j) : 1 � i; j � ng, the feasible solutions are given by �S� = f(i; �(i)) : 1 � i � ng, forsome permutation � of 1; 2; : : : ; n, and the set of feasible solutions �Sn is given as�Sn = f �S� : � is a permutation of 1; 2; : : : ; ng :In this 
ase we have j �Snj = n!, j �S�j = n for all permutations �, j �Enj = n2, and ea
h pair(i; j), belongs to (n�1)! feasible solutions 
orresponding to permutations whi
h assign ito j. Thus �n = (n�1)!. Noti
e however, that 
ondition (P4) is not ful�lled be
ause lnn!ntends to 1 as n approa
hes in�nity. It 
an be 
he
ked that the result of Theorem 3.1does not hold in the 
ase of the LAP. Indeed, 
onsider an LAP with 
ost 
oeÆ
ientsuniformly and independently distributed on [0; 1℄. As shown by Karp [11℄, the expe
tedoptimal value of this problem E(F �n ) is bounded from above by 2. Theorem 3.1 wouldnow imply Pr(limn!1 F �nn = 12 ) = 1, leading toPr �9 n0 su
h that F �n � n4 for n � n0� = 1 ;whi
h 
ontradi
ts the boundedness of F �n . Thus Theorem 3.1 
annot hold in this 
ase.Now let us turn to 
ondition (P3). A standard assumption in the literature 
on
erningthe asymptoti
 behavior of 
ombinatorial optimization problems is that the 
oeÆ
ientsof the problem are independent random variables with a 
ommon distribution (and notne
essarily bounded). Also the assumption of �nite varian
e and higher order moments
an be 
onsidered as a natural one (while being redundant in 
ase of bounded 
ost 
o-eÆ
ients). Szpankowski [18℄ showed that in su
h a 
ase under additional monotoni
ityassumptions on F �n and jSnj, Theorem 3.1 
an be proved by purely probabilisti
 te
h-niques. One 
an ask, however, what happens in our proof of the main theorem withour set of assumptions in 
ase that the 
ost 
oeÆ
ients fn(e) are not bounded, but
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s 14distributed on [0;+1), while ful�lling all other requirements in (P3). We 
an observethat the boundedness of the 
oeÆ
ients has only been exploited in the proofs of Lemma4.2 and Lemma 4.3 to show that the sequen
es F �nsn and G0n(�), � � 0, are bounded. Of
ourse, if we drop the boundedness 
ondition on fn(e), the boundedness of the abovesequen
es 
annot be guaranteed.However, given that the �rst two moments of fn(e) are �nite, the probability that Fn(S)snis bounded tends to 1 as the size n of the problem tends to in�nity for any S 2 Sn.Indeed, re
all that E (Fn(S)) = snE, Var (Fn(S)) = snD, and therefore E � Fn(S)sn � = Eand Var (Fn(S)sn ) = Dsn . By applying Chebyshev's inequality we getPr�Fn(S)sn � K� � Pr�����Fn(S)sn �E���� � K �E� � D2s2n(K �E)2 ;for any K > E. Sin
e sn ! 1 as n approa
hes in�nity, Lemma 4.2 and Lemma 4.3hold in probability. This implies that also our main result holds in probability in the
ase that the 
oeÆ
ients of the problem are unbounded.Corollary 5.1 Let a 
ombinatorial optimization problem be given as in (2). Assumethat the 
osts fn(e), n 2 N, e 2 En, are random variables identi
ally and independentlydistributed on [0;+1) with �nite expe
tation and varian
e. Assume moreover that theproperties (P1), (P2), and (P4) are ful�lled. Then F �nsn 
onverges in probability to E asthe size n of the problem tends to in�nity, i.e.8� > 0; limn!1Pr�����F �nsn �E���� < �� = 1: (25)It remains an open question whether the stronger 
onvergen
e result for unbounded
ost 
oeÆ
ients 
an be obtained through the statisti
al me
hani
s formalism. Anotherquestion of general interest arises when making an analogy with simulated annealing asanother statisti
al me
hani
s approa
h in 
ombinatorial optimization. Is there any 
lassof problems whi
h is well suited for simulated annealing? Is this 
lass 
hara
terized byany 
ombinatorial property? Clearly, this is a rather 
omplex question and its 
ompleteanswer seems to be 
urrently out of sight.Finally, let us brie
y dis
uss the result presented in this paper in 
omparison to existingresults on the asymptoti
 behavior of 
ombinatorial optimization problems presentedin [6, 18℄. The \in probability" version of the result presented in this paper followsfrom the result of Burkard and Fin
ke [6℄, whereas the \almost sure" version does not.The stronger version of our result, the \almost sure" version, is the same as the resultobtained by Szpankowski [18℄ under slightly di�erent 
onditions. It is worthy to noti
e,however, that our proof te
hnique is 
ompletely di�erent from the purely probabilisti
te
hniques applied in [6, 18℄ and provides a further appli
ation of the useful analogybetween statisti
al me
hani
s and 
ombinatorial optimization. Another ni
e feature ofour proof is that it reveals the importan
e of the 
ombinatorial 
ondition (P4): Thepointwise 
onvergen
e of the expe
ted value of the obje
tive fun
tion 
an only be shownif that 
ombinatorial 
ondition is ful�lled.A
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