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Abstract. The analogy between combinatorial optimization and statistical
mechanics has proven to be a fruitful object of study. Simulated annealing,
a metaheuristic for combinatorial optimization problems, is based on this
analogy.

In this paper we use the statistical mechanics formalism based on the above
mentioned analogy to analyze the asymptotic behavior of a special class of
combinatorial optimization problems characterized by a combinatorial condi-
tions which is well known in the literature. Our result is analogous to results
of other authors derived by purely probabilistic means: Under natural prob-
abilistic conditions on the coefficients of the problem, the ratio between the
optimal value and the size of a feasible solution approaches almost surely the
expected value of the coefficients, as the size of the problem tends to infinity.
Our proof shows clearly why the above mentioned combinatorial condition,
which characterizes the class of investigated problems, is essential.
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1 Introduction

Large combinatorial optimization problems are often hard to solve. In most of the cases
this coincides with the membership in the class of NP-hard problems which implies that
most probably the considered problem is not solvable by any polynomial time algorithm.
Such difficulties in solving large problems are one more reason why the asymptotic
behavior is a topic of interest. Generally we are interested in the asymptotic behavior of
the optimal value of a combinatorial optimization problem as its size tends to infinity,
under the assumption that the coefficients of the problem are random variables and fulfill
certain (probabilistic) conditions.

A number of results on the asymptotic behavior of different problems, e.g. the linear
assignment problem (LAP), the quadratic assignment problem (QAP), the traveling

*This research has been partially supported by the Spezialforschungsbereich F 003 ” Optimierung und
Kontrolle” / Projektbereich Diskrete Optimierung.

tGraz University of Technology, Institut fiir Mathematik B, Steyrergasse 30, A-8010 Graz, Austria.
Email: {albrecher,burkard,cela}@opt.math.tu-graz.ac.at



AN ASYMPTOTICAL STUDY BY MEANS OF STATISTICAL MECHANICS 2

salesman problem (TSP), are available in the literature. As illustrative examples we
describe briefly some results on the LAP and the QAP, two problems which show a
completely different asymptotic behavior. In the linear assignment problem of size n
we are given an n X n matrix C' = (¢;;) and look for a permutation ¢ of 1,2,... ,n,
which minimizes Y ;" , Cip(iy- A number of results on the asymptotic behavior of the
LAP has been derived in the 80’s and early 90’s. In the case that the coefficients
¢;j are independent random variables uniformly distributed on [0,1], Olin [14] and
Karp [11], respectively, showed that the optimal value of the LAP is bounded and
lies between 1 51 and 2. Aldous [2] recently proved that the optimal value is equal to
7%—2 —o(l) = ~ 1.645, which was already suggested by Mézard and Parisi [13] (see
also [9]). Thus the optimal value is independent from the size of the problem.

A completely different asymptotic behavior is shown by the quadratic assignment prob-
lem (QAP). In the Koopmans-Beckman QAP of size n we are given two n X n matrices
A = (a;j) and B = (b;j) and look for a permutation ¢ of 1,2,... ,n which minimizes
9(¢) = D27 i=1 ag(iyg(j)bij- The optimal value g(¢*) of the QAP depends on the size
n of the problem: g(¢*) = ©(n?). Moreover, as the size of the problem approaches
infinity, the value of the objective function yielded by any solution gets arbitrarily close
to the optimal value. In 1982, Burkard and Fincke studied the asymptotic probabilistic
behavior of quadratic (sum) assignment problems of the Koopmans-Beckmann form
(see [4]). Under certain probabilistic constraints on the coefficients of the problem, they
have shown the following result: (BF1) The relative difference between the worst value
and the optimal value of the objective function tends to zero with probability tending to
one as the size of the problem tends to infinity.

An analogous result holds for the bottleneck QAP, see Burkard and Fincke [5].

Under similar probabilistic constraints on the coefficients of the problem Frenk,
Houweninge and Rinnooy Kan derived the following result for the QAP: (FHR) The
objective function value can almost surely be written asymptotically as a function of the
size of the problem and of the expected value of the coefficients of the problem. When
applied to the QAP, FHR is stronger than BF1, since FHR implies the following prop-
erty: (BF1’) The ratio between the worst value and the optimal value of the objective
function approaches 1 almost surely as the size of the problem tends to infinity.

Under weaker probabilistic constraints, Rhee derives an analogous but sharper result for
the QAP (see [15]). In a later work, Rhee considers the difference between the objective
function and the function which approximates it asymptotically and almost surely, as
stated in FHR. She estimates the expected value of this difference (see [16]).

In 1985, Burkard and Fincke generalize and strengthen the results of [4] to a whole class of
combinatorial optimization problems. Problems belonging to this class are among others
quadratic assignment problems (either sum or bottleneck version) as well as certain
combinatorial and graph theoretical optimization problems (see [6]). For such problems
the following result holds: (BF2) With probability tending to one the ratio between the
worst value and the optimal value of the objective function approaches 1 as the size of
the problem tends to infinity.

Under slightly more restrictive probabilistic conditions Szpankowski [18] shows that the
following property holds for a whole class of combinatorial optimization problems: (S)
The ratio between the best and the worst value of the objective function tends almost
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surely to 1 as the size of the problem approaches infinity. The class of problems con-
sidered by Szpankowski is characterized by the same combinatorial condition (cf. (10))
which characterizes the class of problems investigated by Burkard and Fincke [6].

It is remarkable that all results mentioned above are derived by using purely probabilistic
techniques, although the class of problems to which these results apply is defined in
terms of a combinatorial structural condition. Recall, for example, that the asymptotic
behavior of the QAP and the LAP (or the TSP) are essentially different simply because
of their different combinatorial structure (see e.g. [6]).

In 1986, Bonomi and Lutton used a statistical mechanics formalism to analyze the
asymptotic behavior of the QAP (see [3]). Bonomi and Lutton applied, however, an
invalid convexity argument to exchange the limit and the derivative for a sequence of
functions over [0, +00) (see [3], page 297, equalities (13) and (14) !), the exchange step
being crucial for the whole proof.

In this paper we show that the statistical mechanics approach can be applied to analyze
the asymptotic behavior of a whole class of combinatorial optimization problems which
contains QAP as an element. This class of problems is similar to the classes of problems
investigated by Burkard and Fincke [6] and Szpankowski [18]. Its elements show the
following asymptotic behavior: the ratio between the optimal value and the size of a
feasible solution approaches the expected value of the coefficients of the problem almost
surely, as the size of the problem tends to infinity. An interesting feature of this approach
is that it makes clear the importance of a combinatorial condition which characterizes
the investigated class of problems and is fulfilled by all problems which are currently
known to show the above mentioned asymptotic behavior, e.g. the quadratic assignment
problem. This condition says that the ratio between the logarithm of the number of
feasible solutions and the cardinality of a feasible solution tends to 0 as the size of the
problem tends to infinity.

The paper is organized as follows. In Section 2 the analogy between combinatorial
optimization and statistical mechanics is described in some detail and the statistical
mechanics formalism is introduced. In Section 3 we introduce the class of combinatorial
optimization problems we are dealing with and formulate our main result. Then, in the
next section the main result is proved. The proof involves six lemmata and parts of it
are quite technical. Finally, in Section 5 we discuss the nature of the conditions imposed
on the problems we deal with, and formulate some open questions and general remarks.

2 Thermodynamics and Combinatorial Optimization

In combinatorial optimization we are interested in choosing a solution which minimizes
the value of a certain objective function (or maximizes it, in the case of a maximization
problem) among a finite number of feasible solutions. More formally a generic combi-
natorial optimization problem P may be defined as follows. Let a ground set E and a
cost function f: E — R be given. A feasible solution S is a subset of the ground set
E and the set of feasible solutions is denoted by §. By means of the cost function f we
associate costs to the feasible solutions. One possibility is to define an objective function

1t is not difficult to give examples of sequences of real functions which are convex on [0, +00), where
the derivative and the limit can not be exchanged in a neighborhood of 0.
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F: S8 —R", where F(S) is given by

F(S) =Y f(e) (1)

e€eS

for all S € §. Such an objective function is often called a sum objective function. The
(sum) problem can then be formulated as the task of finding

Let us turn now to thermodynamics. A thermodynamical system may show different
states which are characterized by different values of energy. In thermodynamics we are
often interested in low-energy-states of the considered system, just as we are interested in
feasible solutions with a small value of the objective function in a minimization problem.
More precisely, an analogy between combinatorial optimization and thermodynamics can
be built along the following two lines:

e Feasible solutions of a combinatorial optimization problem are analogous to states
of a physical system.

e The objective function value corresponding to a feasible solution is analogous to
the energy of the corresponding state.

According to statistical mechanics the thermal equilibrium of a thermodynamical system
is characterized by the so-called Boltzmann distribution, where the probability that the
system is at a state ¢ with energy F; at temperature T is given by

1 _E
Q(T) eXp(kB T

with kp being a physical constant known as Boltzmann constant, and Q(T) being the
so called partition function defined by

) (3)

QT) = Y exp( k). (4)
J

In the last equality the summation extends over all possible states of the system.

The statistical mechanics formalism can be used to investigate the asymptotic behavior
of combinatorial optimization problems. The first authors who argued on the use of this
formalism to analyze the asymptotic behavior of the quadratic assignment problem were
Bonomi and Lutton [3]. We apply this approach to a generic combinatorial optimization
problem as introduced in the beginning of this section.

Our probabilistic model looks as follows. A probability Pr(S) is assigned to each feasible
solution of the problem S € S by

exp (—F(S) - p)
Q(n) ’

Pr(S) = (5)
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where 4 is a parameter which simulates the reciprocal of the temperature, and Q(u) is
the partition function defined analogously as in the Boltzmann distribution by

Q) ==Y exp(=F(S)-p) . (6)

Ses

Denote by (F(S))(n) the expected value of the objective function F(S) in the above
probabilistic model, for fixed reciprocal of the temperature equal to p. (F(S))(u) is
given by the following equality:

(F(S) (1) = @ Y F(S)exp (=F(S) - p). (7)

Ses

It can easily be seen that the right-hand side of the above equality is equal to the
derivative of —In@Q(p) with respect to p:

(F(5)) (1) = =(InQ(p))". (8)

Further, it is well known and easily seen that the following relationship between the
variance AF(S)(u) of the objective function F'(S) (in the probabilistic model introduced
above) and the second derivative of In Q(p) holds:

AF(S)() = ([F(S) ~ (F(S) ()] ) = (n Q)" )

3 The main result

In this section we formulate our main result concerning a specific asymptotic behavior of
combinatorial optimization problems, and introduce the probabilistic and combinatorial
conditions to be imposed to the combinatorial problem so as to guarantee that specific
behavior.

Consider a sequence P,, n € N, of instances of a generic combinatorial optimization
problem, where P, is the instance of size n (whatever this means). The ground set, the
set of feasible solutions, the cost function, and the objective function of problem P, are
denoted by E,, S,, fn. and F,, respectively. Denote by F, S, the optimal value and
an optimal solution of problem P,, respectively:

We assume that the costs f,(e), e € F,, n € N, are random variables, and that we are
interested in the asymptotic behavior of F); as n tends to infinity. We will show that
under certain combinatorial and probabilistic conditions formulated below, the ratio
F}/|S}| almost surely approaches the expected value of the cost coefficients fy,(e) as the
size n of the problem tends to infinity.

Assume that our combinatorial optimization problem has the following properties:
(P1) For each n € N, all feasible solutions S € S,, have the same cardinality s,,.

(P2) For some fixed n € N, let n,(e) be the number of feasible solutions S € S, such
that e € S. We suppose that there exists a constant 7, such that n,(e) =, for
alle € E,.
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(P3) The costs fn(e), n € N, e € E,, are random variables identically and indepen-
dently distributed on [0, M], where M > 0.

(P4) The cardinality of the set of feasible solutions |S,| and the cardinality of the
feasible solutions s, tend to infinity as n tends to infinity. Furthermore

In|S,
lim n |5l

n—oo S,

~0. (10)

Let us denote by E := E(f,(e)) and D := Var(f,(e)) the (common) expected value

and variance of the random variables f,(e), n € N, e € E,, respectively. We will show
that li_)m I:—" = F, almost surely. Summarizing, our main result is given by the following
n—oo °n

theorem:

Theorem 3.1 Let a combinatorial optimization problem be given as in (2) and let the

properties (P1)-(P4) be fulfilled. Then f—: converges almost surely (briefly a.s.) to E as
n tends to infinity, i.e.

F*
P’r(lim —":E> =1. (11)
n—oo S’I’L

4 Proof of the main result

The proof of Theorem 3.1 is based on the following lemmata:

Lemma 4.1 Under the conditions of Theorem 3.1, the expected value of the objective
function F,(S) for p =0 (according to the distribution on S, defined by (5)) fulfills the
following property

L {F(9))0)

n—oo Sp,

=F a.s.

Proof. By applying equality (7) for u = 0 we get

(Fu(SNO) = 3 FulS)- 757

SES,

Considering property (P2), the last equality can be transformed as follows:

(F.(8))(0) = |§n Y ) = ﬁ > e ule) = 2 3 fule)

SeS, e€S e€E, e€k,

From (P2) we have |S,| - s, = |Ey| - 7, and by substitution we obtain:

<Fn<i)><0> _ Zee%lfn(e). (12)

Since condition (P3) is satisfied, the variance D of the cost coefficients f,(e) is bounded,
and the strong law of large numbers applies:

Pr (nILIISO @ = E) =1. (13)
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Lemma 4.2 Under the conditions of Theorem 3.1, there exists a convergent subsequence
Fr F* ..
. of the sequence . with limit equal to .

Proof. Since

Fn(Sp)
Sn

< Msn — M| the sequence 1:—: is bounded. Therefore, it has at

Sn

*
n

least one cluster point, which we denote by [, and a subsequence —= converging to [:

Snom

*

F
[:= lim o, (14)

m—oo Sp

If S; is an optimal solution of problem P,, the following inequalities hold for the partition
function @, (p):

exp (—Fn(S,) - 1) < Qnln) < [Snl - exp (=Fu(Sy) - 1) (15)

—Fy - p <InQp(p) <InSp| = Fy - p. (16)

Let us now introduce the continuous and differentiable functions G, (u) = W, de-
fined on [0, 00), for all n € N. Dividing both sides of (16) by s, we get

F? In|S, F?
—p - = < Gu(p) < | ‘—u-—- (17)
Sn Sn Sn

Lemma 4.3 Under the conditions of Theorem 3.1, for each | defined in (14), there
ezists a subsequence Gy, (1) of the sequence of functions G, (u), such that Gp, (1) and
the sequence of its derivatives G;lk (1) converge uniformly in (o, +00) for any a > 0, and

lim Gy, (p) = —p-1, (18)
k—oc
lim G, () = 1. (19)

Proof. We apply the following well known result (see e.g. [17]). Let a sequence of
differentiable functions G, , pointwise convergent on an interval [a, +0c), be given.
Assume that the sequence of derivatives Gj, is equicontinuous and uniformly bounded
on [, 00). Then, there exists a subsequence G, of G, such that both sequences G,
and Gj, are uniformly convergent on [, 00).

Note that the pointwise convergence of G, (u) follows from Lemma 4.2, (10) and (17).
Thus, in order to prove the lemma it is sufficient to show that the sequence of functions
G, is uniformly bounded and equicontinuous on [, 00).

First, let us show that the sequence of derivatives G}, is uniformly bounded on [a, +00).

Remark that VS € S,, the following equality holds:

Fu(S) =Y fule) S M- |S|=M-s,. (20)

e€eS
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The following inequalities show that G (u) is uniformly bounded:

2, [Fn(S)]-exp(—p- Fu(S))  sn- M- 3 exp(—p- Fu(S))
‘G’n(ﬂ)‘ < SeSy < SeSy

Sn - Qn (i) Sn - Qn(p) =M

Secondly, we show that the sequence of functions G/, is equicontinuous on [, +00), i.e.
Ve > 030 >0, such that Vui, pus € [o, +00) and Vn € N

=2l <0 = |GL(m) — Gh(p2)| < e
holds.

Let us evaluate the difference |G}, (u1) — Gl (u2)|, for o < py < pg and n € N.

exp(—p - Fn(S)) _ exp(=pa2 - Fu(S))

G () — G < 30 P25 Qi) Qn(p2)

S
SES, n

N (- Fa(S) | Qnlp) - exp(=pa - Fu(S))
<ur. 37 SR -

Next, we show that there exists a T' > 0 such that the following inequality holds for all
Syg € S, and for all n € N:
Qn(p1) - exp(p1 - Fu(So))

‘1— Qn(ﬂ2)'exp(ﬂ2'Fn(50)) ST-(:UQ_,U*I). (22)

The following elementary transformations prove the existence of such a 7. Assume
w.l.o.g. that

> e (Fa(S0) —Fal9) = D exp (m(Fa(S0) = Fa(9))) | 2

S: Fn(S)>Fn(So) S: Fn(S)>Fn(So)

S e (i) - FS)) - Y e (u(Fa(S0) — Fa(s))

S: Fn(S)<Fn(So) S: Fp(S)<Fn(So)
(The other case can be handled analogously.) Then we have

1+ > exp(pr - (Fu(So) — Fu(9))

Qn(p1) - exp(p1 - Fa(S0)) | _ . SESn5#50 -

1+ Y exp(ua - (Fa(So) — Fu(S))
S€Sn:S#So

> Lexp (12 (Fu(So) = Fa(9))) = exp (- (Fa(S0) = Fu(S)))] ‘

3 exp <,u2 - (Fn(So) — Fn(S))>

S: Fr(S)>Fn(So)



AN ASYMPTOTICAL STUDY BY MEANS OF STATISTICAL MECHANICS 9

> exp (- (FulS0) = FalS))) [exp (2 = ) - (Fu(S0) = Fa(5)) — 1]

S: Fn(S)>Fn(So)
> exp (e (FalS0) = Fu(9)))
S: Fp(S)>Fy(So)

<

> e (2 = m) - (FalS0) = Ful8) ~ 1]

St Fn(S)>Fn(So)

3 exp (,ug (Fn(So) — Fn(S))>

S Fp(S)>Fn(So)

We now show that

S Lo (e = m) - (Fa(S0) - Fuls)) -1 | <
(S)

S: Fp >Fy(So)

) Y e [ua (Fa(S) - Fa(9))]. (23)

St Fn(S)>Fn(So)

Indeed, inequality (23) follows from the following inequalities which hold for all S € S,
such that F,(S) > F,(So).

ad — -1, _ i
‘eXp ((uz — 1) - (Fu(So) — Fn(S))> - 1‘ -y (12 = 1)’ (Zn(s) Fn(50))
i=1
< (g — ) Lo 30 L2 ) Z (S
i=1 '
< (=) exp [ (Fa(8) = Fu(S)].
By putting things together we get (22) with T :=

We return at (21) and obtain:

! 1 €xXp\— FnS 1
(0ol = Gl Sl 3 p(cﬁm)( Pl

(MQ Ml)a
from which the equicontinuity of G, on [&, 00) obviously follows.

Due to (10), (14) and (17) we have limy_,o, Gy, (1) = —pl. Then, due to the uniform
convergence of the above sequence together with the sequence of its derivatives we get

/
lim Gy, (1) = <klin;O Gnk(,u)> = —I. |
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Lemma 4.4 E > 1, where E and | are defined above.

Proof. Consider the expected value E(F, (S)) of the objective function value of problem
P,, S € S, (with respect to the distribution of the random variables f,(e), e € E,). We

have E(F,(S)) = spF and hence E(F”—(S)) — E. This implies that 2= < E Vn € N.

Sn Sn

Then, since [ is defined as the limit of a subsequence of f—f, we have | < E. [ |

At this point there are two possibilities: either [ = E' and F is the (unique) limit of f—f,

or there exists a cluster point [ of f—f such that [ < E. In the first case the main result
follows immediately. We show that the second case almost surely cannot happen.

Assume that [ < E throughout the rest of this section. Clearly, in this case the conver-
gence of Gy, and G}, is not uniform over the whole [0,00) (cf. Lemma 4.1). According
to Lemma 4.3, however, limy_,, Gy, (#) = —I uniformly on [, 00) for each a > 0, and
limg 00 Gy, (0) = —FE < —I, due to Lemma 4.1. Under these conditions, for all K >0
and for all m € N there must be some pg > 0 and some ky € N, kg > m, such that
G;;ko (no) > K. Indeed, given a K > 0, we choose e = (F —1)/4 and o = }‘;—I_(l, and apply
the above mentioned convergence result on [a, 00) and at 4 = 0. For kg large enough we

have G, (a) > —l —¢ and G}, (0) < —F + ¢. Thus, by the mean value theorem,
0 0

E -1
aG;;ko (MO) - G;lko (04) o G;zko (0) >FE - —-2= 2

for some pg € [0,a]. The last equality implies that ngo (o) > K. Thus the second

derivatives G%k (1) are unbounded as k approaches infinity and x4 approaches 0. We show
that almost surely this cannot be the case, because: a) The third derivative Gy (1) is
almost surely non-positive for g > 0 and b) the sequence of second derivatives G/ (0)
is almost surely bounded. Combining a) and b) with the nonnegativity of the second

derivative G (u) = AR (S)(w) (cf. (9)) for all n € N and p > 0, yields the desired

Sn
contradiction. The facts a) and b) are proven in the next two lemmata.

Lemma 4.5 The third derivative G%’k (1) is almost surely non-positive for k > ko, u > 0,
where ko is some fized natural number.

Proof. We have

!/
1 QefFTLk(S)N

ARSI = - Se%k [P (8) = (P ) () T |

1
Gy (1) = —

where (-)(u) denotes the expectation w.r.t. the Boltzmann distribution with parameter
w. It follows that

1" _ L B e i (S <sz>(ﬂ) B 2
G () = £ Sgkz(pnk<s) (Fo)) 5oy (g~ (Puel () +
2 e_Fnk(S)M e_Fnk(S)H
+S€ZS% [Fus(8) = (Fa) )] (= Bua(8) 75— + (B 05— 7) | =
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3
_ L(o_ 3 (Fnk(S) - <Fnk>(u))3ank(S)”) ) _<(Fnk —(Fa) (1) >(u).

Snk Sesnk an (lu’)

Hence it is enough to show that Fy,, (S) — (Fy,,)(1) >0, V > 0, almost surely. Indeed,
for all S € Sy, Fy, (S) = > .cg fn,(e) is the sum of s,, independent and identically
distributed random variables with E(f,, (e)) = E. Thus, according to the strong law of

large numbers, we have
Pr(lim FL(S)—E" =0> =1.

k—o0 Sny,

At the same time, we have for all y > 0

pr(nmw_zzo):

k—oo Sny,

() = 0

due to the uniform convergence of —G!, to [ on any interval o, 00), a > 0.

The inequality £ > I, together with Lemma 4. 1 for the case u = 0, thus implies that
Fp, (S) — (Fy,) () > 0 a.s. for all g > 0, as desired. ]

Lemma 4.6 The sequence of the second derivatives Gl (0) is almost surely bounded.
Proof. Since GI!(0) = %5)(0) > 0, we have by Markov’s inequality

E(G(0))

Pr(Gn(0) > K) < T

for every K > 0, where E denotes the expectation w.r.t. the distribution of the random
variables f,(e),e € E,. Now we have

E(G"(0)) = SMZ SPaTS |2<ZF )2

SeSy SeS,

2 2
1 1
= 5 E > (an(e)) TS IE( > an(e))

SES, \e€S S€eSy e€S

2
1
= ;E<an(e)) |S > (an )
ecsS eck,

1
- —(snD+s§E2)— Ty (\En\D-I-\EnFEQ)

Sn |Sn?
= D &, \) <D,

where we have used the equality n,|E,| = s,|Sp|. Thus, for any K > 0,

Pr(Gn(0) > K) < —

Since D = Var (f,(e)) is finite, it follows that G! (0) is almost surely bounded. ]
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Summarizing, if | < E, the second derivatives G’Ak almost surely have to be bounded
and unbounded at the same time. This implies that | < E can not happen. Thus [ = F
a.s. and Theorem 3.1 holds.

Remark: The proof technique can also be interpreted as follows: Since % =
|G, ()] < M is bounded, for each p > 0 there exists a convergent subsequence such

that klim M(p) = I(p). In the proof it is shown that [(4) does not depend on p
—00 "k
and [ = F almost surely, from which it follows that

lim () (1)

n—oo Sn,

=F almost surely for any p € [0, 00). (24)

Recall that (F,)(u) denotes the expectation of F,(S) w.r.t. the Boltzmann weight with
parameter p assigned to each admissible solution S € S,,. The right hand side of (24)
being independent of u, Theorem 3.1 can now be deduced for u — oo, since for any
So € S, we have (see e.g. Aarts and Korst [1])

‘ e~ FalSom ) e~ Fn(So)n
RS = o T TS e
SES,
o—1(Fn(So0)—F;) L for Sy e S*
lim = 53] !
U—r00 ‘87);| + Z e*IJ(Fn(S)fFrt) 0 for SO € Sn \ 87):7
SeS\S;

where S;; C S, is the set of optimal solutions of problem P,, and thus for all n € N we
have lim (F,)(u) = F;r.
Hu—00

5 Discussion and open questions

Let us shortly discuss conditions (P1)-(P4). (P3) is a probabilistic condition on the
coefficients of the problem and we will come back to that later on. Condition (P4)
is a crucial, purely combinatorial condition, which is used in Lemma 4.3 to show the
pointwise convergence of Gy, (1) and this is the simplest kind of convergence which has
to hold in order to get through with the other lemmata. A nice feature of our proof of
the main result is that is shows explicitly the importance of condition (P4). Note that
(P4) is essential for deriving any of the results existing in the literature on problems
which show an asymptotic behavior similar to the one described by Theorem 3.1 (e.g.
results BF1, BF2 and FHR).

Conditions (P1) and (P2) describe the combinatorial structure of the set of feasible
solutions. (P1) characterizes the feasible solutions from a quantitative point of view
saying that all feasible solutions have the same cardinality. (P2) describes the set of
feasible solutions from a structural point of view showing how often an element of the
ground set appears in some feasible solution. The fact that this frequency index is
constant among different elements from the ground set means that the feasible solutions
are distributed somehow uniformly in the ground set. It is an open question whether
condition (P1) can be dropped or substituted by a weaker one. Szpankowski [18] showed
in his purely probabilistic proof of Theorem 3.1, that (P2) can be dropped, if in addition

F} is a nonincreasing function of n and |Sy11| > |S,| for all n € N.
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Conditions (P1) and (P2) are fulfilled by many combinatorial optimization problems.
(P4) is a more restrictive condition and it is essential for the correctness of the main
result. As an illustrating example consider that the QAP fulfills all these conditions
whereas the linear assignment problem (LAP) fulfills only (P1) and (P2) but not (P4).
Indeed, the QAP of size n can be formulated as a general combinatorial optimization
problem with a ground set

E, ={(i,j,k,1): 1 <14,j,k,I <n such that i = j if and only if &k = [},
feasible solutions
Sp ={(4,4, (1), $(4)): 1 < 4,j < n}
for ¢ being a permutation of 1,2,... ,n, and the set of feasible solutions
Sn = {S¢: ¢ is a permutation of 1,2,... ,n},

(see also [6]). Clearly |E,| = O(n'), |Sy| = n? for any permutation ¢, |S,| = n!, and
condition (P4) is fulfilled, since 1117(1_721') = o(1). Each element (i, 7, k,[) of the ground set
appears in (n—2)! feasible solutions, namely in all S, corresponding to some permutation
¢ for which ¢(i) = k, ¢(j) = 1. Thus n, = (n — 2)\.

For the linear assignment problem of size n the ground set FE, is given by FE, =
{(i,4): 1 <i,j < n}, the feasible solutions are given by Ss = {(i,¢(i)): 1 <i < n}, for
some permutation ¢ of 1,2,... ,n, and the set of feasible solutions S, is given as

S, ={Ss: ¢ is a permutation of 1,2,... ,n}.

In this case we have |S,| = n!, |S,| = n for all permutations ¢, |E,| = n?, and each pair
(i,7), belongs to (n — 1)! feasible solutions corresponding to permutations which assign 4
to j. Thus n, = (n—1)!. Notice however, that condition (P4) is not fulfilled because %
tends to co as n approaches infinity. It can be checked that the result of Theorem 3.1
does not hold in the case of the LAP. Indeed, consider an LAP with cost coefficients
uniformly and independently distributed on [0,1]. As shown by Karp [11], the expected
optimal value of this problem E(F}) is bounded from above by 2. Theorem 3.1 would

now imply Pr(lim, FT = %) =1, leading to
Pr (EI ng such that F, > % for n > ng> =1,

which contradicts the boundedness of F,;. Thus Theorem 3.1 cannot hold in this case.

Now let us turn to condition (P3). A standard assumption in the literature concerning
the asymptotic behavior of combinatorial optimization problems is that the coefficients
of the problem are independent random variables with a common distribution (and not
necessarily bounded). Also the assumption of finite variance and higher order moments
can be considered as a natural one (while being redundant in case of bounded cost co-
efficients). Szpankowski [18] showed that in such a case under additional monotonicity
assumptions on F;' and |S,|, Theorem 3.1 can be proved by purely probabilistic tech-
niques. One can ask, however, what happens in our proof of the main theorem with
our set of assumptions in case that the cost coefficients f,(e) are not bounded, but
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distributed on [0, +00), while fulfilling all other requirements in (P3). We can observe
that the boundedness of the coefficients has only been exploited in the proofs of Lemma
4.2 and Lemma 4.3 to show that the sequences 1:—: and G} (i), p > 0, are bounded. Of
course, if we drop the boundedness condition on f,(e), the boundedness of the above
sequences cannot be guaranteed.

However, given that the first two moments of f,(e) are finite, the probability that F’;—E:q)
is bounded tends to 1 as the size n of the problem tends to infinity for any S € S,.

Indeed, recall that E(F), (S)) = s, F, Var (F,(S)) = s, D, and therefore E (Fn_(s)) - E

Sn
and Var (F’;—E:q)) = %. By applying Chebyshev’s inequality we get
F, F, D?
pr(B8) s k) cpr (B8 g ok )< P
Sn Sn Sn(K - E)2

for any K > FE. Since s,, — o0 as n approaches infinity, Lemma 4.2 and Lemma 4.3
hold in probability. This implies that also our main result holds in probability in the
case that the coefficients of the problem are unbounded.

Corollary 5.1 Let a combinatorial optimization problem be given as in (2). Assume
that the costs fn(e), n € N, e € E,, are random variables identically and independently
distributed on [0, 4+o00) with finite expectation and variance. Assume moreover that the
properties (P1), (P2), and (P4) are fulfilled. Then I:—’: converges in probability to F as
the size m of the problem tends to infinity, i.e. "

n— 00

Ve >0, lim Pr(

*
Q—E‘<e>:1. (25)
Sn

It remains an open question whether the stronger convergence result for unbounded
cost coefficients can be obtained through the statistical mechanics formalism. Another
question of general interest arises when making an analogy with simulated annealing as
another statistical mechanics approach in combinatorial optimization. Is there any class
of problems which is well suited for simulated annealing? Is this class characterized by
any combinatorial property? Clearly, this is a rather complex question and its complete
answer seems to be currently out of sight.

Finally, let us briefly discuss the result presented in this paper in comparison to existing
results on the asymptotic behavior of combinatorial optimization problems presented
in [6, 18]. The “in probability” version of the result presented in this paper follows
from the result of Burkard and Fincke [6], whereas the “almost sure” version does not.
The stronger version of our result, the “almost sure” version, is the same as the result
obtained by Szpankowski [18] under slightly different conditions. It is worthy to notice,
however, that our proof technique is completely different from the purely probabilistic
techniques applied in [6, 18] and provides a further application of the useful analogy
between statistical mechanics and combinatorial optimization. Another nice feature of
our proof is that it reveals the importance of the combinatorial condition (P4): The
pointwise convergence of the expected value of the objective function can only be shown
if that combinatorial condition is fulfilled.
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