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An asymptotial study by means of statistial mehanis 2salesman problem (TSP), are available in the literature. As illustrative examples wedesribe briey some results on the LAP and the QAP, two problems whih show aompletely di�erent asymptoti behavior. In the linear assignment problem of size nwe are given an n � n matrix C = (ij) and look for a permutation � of 1; 2; : : : ; n,whih minimizes Pni=1 i�(i). A number of results on the asymptoti behavior of theLAP has been derived in the 80's and early 90's. In the ase that the oeÆientsij are independent random variables uniformly distributed on [0; 1℄, Olin [14℄ andKarp [11℄, respetively, showed that the optimal value of the LAP is bounded andlies between 1.51 and 2. Aldous [2℄ reently proved that the optimal value is equal to�26 � o(1) � �26 � 1:645, whih was already suggested by M�ezard and Parisi [13℄ (seealso [9℄). Thus the optimal value is independent from the size of the problem.A ompletely di�erent asymptoti behavior is shown by the quadrati assignment prob-lem (QAP). In the Koopmans-Bekman QAP of size n we are given two n� n matriesA = (aij) and B = (bij) and look for a permutation � of 1; 2; : : : ; n whih minimizesg(�) = Pni;j=1 a�(i)�(j)bij. The optimal value g(��) of the QAP depends on the sizen of the problem: g(��) = �(n2). Moreover, as the size of the problem approahesin�nity, the value of the objetive funtion yielded by any solution gets arbitrarily loseto the optimal value. In 1982, Burkard and Finke studied the asymptoti probabilistibehavior of quadrati (sum) assignment problems of the Koopmans-Bekmann form(see [4℄). Under ertain probabilisti onstraints on the oeÆients of the problem, theyhave shown the following result: (BF1) The relative di�erene between the worst valueand the optimal value of the objetive funtion tends to zero with probability tending toone as the size of the problem tends to in�nity.An analogous result holds for the bottlenek QAP, see Burkard and Finke [5℄.Under similar probabilisti onstraints on the oeÆients of the problem Frenk,Houweninge and Rinnooy Kan derived the following result for the QAP: (FHR) Theobjetive funtion value an almost surely be written asymptotially as a funtion of thesize of the problem and of the expeted value of the oeÆients of the problem. Whenapplied to the QAP, FHR is stronger than BF1, sine FHR implies the following prop-erty: (BF1') The ratio between the worst value and the optimal value of the objetivefuntion approahes 1 almost surely as the size of the problem tends to in�nity.Under weaker probabilisti onstraints, Rhee derives an analogous but sharper result forthe QAP (see [15℄). In a later work, Rhee onsiders the di�erene between the objetivefuntion and the funtion whih approximates it asymptotially and almost surely, asstated in FHR. She estimates the expeted value of this di�erene (see [16℄).In 1985, Burkard and Finke generalize and strengthen the results of [4℄ to a whole lass ofombinatorial optimization problems. Problems belonging to this lass are among othersquadrati assignment problems (either sum or bottlenek version) as well as ertainombinatorial and graph theoretial optimization problems (see [6℄). For suh problemsthe following result holds: (BF2) With probability tending to one the ratio between theworst value and the optimal value of the objetive funtion approahes 1 as the size ofthe problem tends to in�nity.Under slightly more restritive probabilisti onditions Szpankowski [18℄ shows that thefollowing property holds for a whole lass of ombinatorial optimization problems: (S)The ratio between the best and the worst value of the objetive funtion tends almost



An asymptotial study by means of statistial mehanis 3surely to 1 as the size of the problem approahes in�nity. The lass of problems on-sidered by Szpankowski is haraterized by the same ombinatorial ondition (f. (10))whih haraterizes the lass of problems investigated by Burkard and Finke [6℄.It is remarkable that all results mentioned above are derived by using purely probabilistitehniques, although the lass of problems to whih these results apply is de�ned interms of a ombinatorial strutural ondition. Reall, for example, that the asymptotibehavior of the QAP and the LAP (or the TSP) are essentially di�erent simply beauseof their di�erent ombinatorial struture (see e.g. [6℄).In 1986, Bonomi and Lutton used a statistial mehanis formalism to analyze theasymptoti behavior of the QAP (see [3℄). Bonomi and Lutton applied, however, aninvalid onvexity argument to exhange the limit and the derivative for a sequene offuntions over [0;+1) (see [3℄, page 297, equalities (13) and (14) 1), the exhange stepbeing ruial for the whole proof.In this paper we show that the statistial mehanis approah an be applied to analyzethe asymptoti behavior of a whole lass of ombinatorial optimization problems whihontains QAP as an element. This lass of problems is similar to the lasses of problemsinvestigated by Burkard and Finke [6℄ and Szpankowski [18℄. Its elements show thefollowing asymptoti behavior: the ratio between the optimal value and the size of afeasible solution approahes the expeted value of the oeÆients of the problem almostsurely, as the size of the problem tends to in�nity. An interesting feature of this approahis that it makes lear the importane of a ombinatorial ondition whih haraterizesthe investigated lass of problems and is ful�lled by all problems whih are urrentlyknown to show the above mentioned asymptoti behavior, e.g. the quadrati assignmentproblem. This ondition says that the ratio between the logarithm of the number offeasible solutions and the ardinality of a feasible solution tends to 0 as the size of theproblem tends to in�nity.The paper is organized as follows. In Setion 2 the analogy between ombinatorialoptimization and statistial mehanis is desribed in some detail and the statistialmehanis formalism is introdued. In Setion 3 we introdue the lass of ombinatorialoptimization problems we are dealing with and formulate our main result. Then, in thenext setion the main result is proved. The proof involves six lemmata and parts of itare quite tehnial. Finally, in Setion 5 we disuss the nature of the onditions imposedon the problems we deal with, and formulate some open questions and general remarks.2 Thermodynamis and Combinatorial OptimizationIn ombinatorial optimization we are interested in hoosing a solution whih minimizesthe value of a ertain objetive funtion (or maximizes it, in the ase of a maximizationproblem) among a �nite number of feasible solutions. More formally a generi ombi-natorial optimization problem P may be de�ned as follows. Let a ground set E and aost funtion f : E ! R+ be given. A feasible solution S is a subset of the ground setE and the set of feasible solutions is denoted by S. By means of the ost funtion f weassoiate osts to the feasible solutions. One possibility is to de�ne an objetive funtion1It is not diÆult to give examples of sequenes of real funtions whih are onvex on [0;+1), wherethe derivative and the limit an not be exhanged in a neighborhood of 0.



An asymptotial study by means of statistial mehanis 4F : S ! R+, where F (S) is given byF (S) =Xe2S f(e) (1)for all S 2 S. Suh an objetive funtion is often alled a sum objetive funtion. The(sum) problem an then be formulated as the task of �ndingminS2S F (S) : (2)Let us turn now to thermodynamis. A thermodynamial system may show di�erentstates whih are haraterized by di�erent values of energy. In thermodynamis we areoften interested in low-energy-states of the onsidered system, just as we are interested infeasible solutions with a small value of the objetive funtion in a minimization problem.More preisely, an analogy between ombinatorial optimization and thermodynamis anbe built along the following two lines:� Feasible solutions of a ombinatorial optimization problem are analogous to statesof a physial system.� The objetive funtion value orresponding to a feasible solution is analogous tothe energy of the orresponding state.Aording to statistial mehanis the thermal equilibrium of a thermodynamial systemis haraterized by the so-alled Boltzmann distribution, where the probability that thesystem is at a state i with energy Ei at temperature T is given by1Q(T ) exp( �EikB � T ) ; (3)with kB being a physial onstant known as Boltzmann onstant , and Q(T ) being theso alled partition funtion de�ned byQ(T ) :=Xj exp( �EjkB � T ) : (4)In the last equality the summation extends over all possible states of the system.The statistial mehanis formalism an be used to investigate the asymptoti behaviorof ombinatorial optimization problems. The �rst authors who argued on the use of thisformalism to analyze the asymptoti behavior of the quadrati assignment problem wereBonomi and Lutton [3℄. We apply this approah to a generi ombinatorial optimizationproblem as introdued in the beginning of this setion.Our probabilisti model looks as follows. A probability Pr(S) is assigned to eah feasiblesolution of the problem S 2 S byPr(S) = exp (�F (S) � �)Q(�) ; (5)



An asymptotial study by means of statistial mehanis 5where � is a parameter whih simulates the reiproal of the temperature, and Q(�) isthe partition funtion de�ned analogously as in the Boltzmann distribution byQ(�) :=XS2S exp (�F (S) � �) : (6)Denote by hF (S)i(�) the expeted value of the objetive funtion F (S) in the aboveprobabilisti model, for �xed reiproal of the temperature equal to �. hF (S)i(�) isgiven by the following equality:hF (S)i(�) = 1Q(�) XS2S F (S) exp (�F (S) � �) : (7)It an easily be seen that the right-hand side of the above equality is equal to thederivative of � lnQ(�) with respet to �:hF (S)i(�) = �(lnQ(�))0: (8)Further, it is well known and easily seen that the following relationship between thevariane �F (S)(�) of the objetive funtion F (S) (in the probabilisti model introduedabove) and the seond derivative of lnQ(�) holds:�F (S)(�) = D[F (S)� hF (S)i(�)℄2 E = (lnQ(�))00: (9)3 The main resultIn this setion we formulate our main result onerning a spei� asymptoti behavior ofombinatorial optimization problems, and introdue the probabilisti and ombinatorialonditions to be imposed to the ombinatorial problem so as to guarantee that spei�behavior.Consider a sequene Pn, n 2 N, of instanes of a generi ombinatorial optimizationproblem, where Pn is the instane of size n (whatever this means). The ground set, theset of feasible solutions, the ost funtion, and the objetive funtion of problem Pn aredenoted by En, Sn, fn, and Fn, respetively. Denote by F �n , S�n, the optimal value andan optimal solution of problem Pn, respetively:F �n = minS2Sn Fn(S) = Fn(S�n):We assume that the osts fn(e), e 2 En, n 2 N, are random variables, and that we areinterested in the asymptoti behavior of F �n as n tends to in�nity. We will show thatunder ertain ombinatorial and probabilisti onditions formulated below, the ratioF �n=jS�nj almost surely approahes the expeted value of the ost oeÆients fn(e) as thesize n of the problem tends to in�nity.Assume that our ombinatorial optimization problem has the following properties:(P1) For eah n 2 N, all feasible solutions S 2 Sn have the same ardinality sn.(P2) For some �xed n 2 N, let �n(e) be the number of feasible solutions S 2 Sn suhthat e 2 S. We suppose that there exists a onstant �n suh that �n(e) = �n forall e 2 En.



An asymptotial study by means of statistial mehanis 6(P3) The osts fn(e), n 2 N, e 2 En, are random variables identially and indepen-dently distributed on [0;M ℄, where M > 0.(P4) The ardinality of the set of feasible solutions jSnj and the ardinality of thefeasible solutions sn tend to in�nity as n tends to in�nity. Furthermorelimn!1 ln jSnjsn = 0: (10)Let us denote by E := E (fn(e)) and D := Var (fn(e)) the (ommon) expeted valueand variane of the random variables fn(e), n 2 N, e 2 En, respetively. We will showthat limn!1 F �nsn = E, almost surely. Summarizing, our main result is given by the followingtheorem:Theorem 3.1 Let a ombinatorial optimization problem be given as in (2) and let theproperties (P1)-(P4) be ful�lled. Then F �nsn onverges almost surely (briey a.s.) to E asn tends to in�nity, i.e. Pr� limn!1 F �nsn = E� = 1: (11)4 Proof of the main resultThe proof of Theorem 3.1 is based on the following lemmata:Lemma 4.1 Under the onditions of Theorem 3.1, the expeted value of the objetivefuntion Fn(S) for � = 0 (aording to the distribution on Sn de�ned by (5)) ful�lls thefollowing property limn!1 hFn(S)i(0)sn = E a:s:Proof. By applying equality (7) for � = 0 we gethFn(S)i(0) = XS2Sn Fn(S) � 1jSnj :Considering property (P2), the last equality an be transformed as follows:hFn(S)i(0) = 1jSnj � XS2SnXe2S fn(e) = 1jSnj � Xe2En �n � fn(e) = �njSnj Xe2En fn(e):From (P2) we have jSnj � sn = jEnj � �n, and by substitution we obtain:hFn(S)i(0)sn = Pe2En fn(e)jEnj : (12)Sine ondition (P3) is satis�ed, the variane D of the ost oeÆients fn(e) is bounded,and the strong law of large numbers applies:Pr� limn!1 hFn(S)i(0)sn = E� = 1: (13)



An asymptotial study by means of statistial mehanis 7Lemma 4.2 Under the onditions of Theorem 3.1, there exists a onvergent subsequeneF �nmsnm of the sequene F �nsn with limit equal to l.Proof. Sine ���Fn(S�n)sn ��� � Msnsn = M , the sequene F �nsn is bounded. Therefore, it has atleast one luster point, whih we denote by l, and a subsequene F �nmsnm onverging to l:l := limm!1 F �nmsnm : (14)If S�n is an optimal solution of problem Pn, the following inequalities hold for the partitionfuntion Qn(�): exp (�Fn(S�n) � �) � Qn(�) � jSnj � exp (�Fn(S�n) � �) (15)�F �n � � � lnQn(�) � ln jSnj � F �n � �: (16)Let us now introdue the ontinuous and di�erentiable funtions Gn(�) = lnQn(�)sn , de-�ned on [0;1), for all n 2 N. Dividing both sides of (16) by sn we get�� � F �nsn � Gn(�) � ln jSnjsn � � � F �nsn : (17)Lemma 4.3 Under the onditions of Theorem 3.1, for eah l de�ned in (14), thereexists a subsequene Gnk(�) of the sequene of funtions Gn(�), suh that Gnk(�) andthe sequene of its derivatives G0nk(�) onverge uniformly in [�;+1) for any � > 0, andlimk!1Gnk(�) = �� � l ; (18)limk!1G0nk(�) = �l : (19)Proof. We apply the following well known result (see e.g. [17℄). Let a sequene ofdi�erentiable funtions Gnm , pointwise onvergent on an interval [�;+1), be given.Assume that the sequene of derivatives G0nm is equiontinuous and uniformly boundedon [�;1). Then, there exists a subsequene Gnk of Gnm suh that both sequenes Gnkand G0nk are uniformly onvergent on [�;1).Note that the pointwise onvergene of Gnm(�) follows from Lemma 4.2, (10) and (17).Thus, in order to prove the lemma it is suÆient to show that the sequene of funtionsG0nm is uniformly bounded and equiontinuous on [�;1).First, let us show that the sequene of derivatives G0n is uniformly bounded on [�;+1).Remark that 8S 2 Sn the following equality holds:Fn(S) =Xe2S fn(e) �M � jSj =M � sn: (20)



An asymptotial study by means of statistial mehanis 8The following inequalities show that G0n(�) is uniformly bounded:��G0n(�)�� � PS2Sn jFn(S)j � exp(�� � Fn(S))sn �Qn(�) � sn �M � PS2Sn exp(�� � Fn(S))sn �Qn(�) =M:Seondly, we show that the sequene of funtions G0n is equiontinuous on [�;+1), i.e.8" > 0 9 Æ > 0, suh that 8�1; �2 2 [�;+1) and 8n 2 Nj�1 � �2j < Æ ) jG0n(�1)�G0n(�2)j � "holds.Let us evaluate the di�erene jG0n(�1)�G0n(�2)j, for � � �1 � �2 and n 2 N.jG0n(�1)�G0n(�2)j � XS2Sn Fn(S)sn � ����exp(��1 � Fn(S))Qn(�1) � exp(��2 � Fn(S))Qn(�2) �����M � XS2Sn exp(��1 � Fn(S))Qn(�1) � ����1� Qn(�1) � exp(��2 � Fn(S))Qn(�2) � exp(��1 � Fn(S)) ���� : (21)Next, we show that there exists a T > 0 suh that the following inequality holds for allS0 2 Sn and for all n 2 N:����1� Qn(�1) � exp(�1 � Fn(S0))Qn(�2) � exp(�2 � Fn(S0)) ���� � T � (�2 � �1) : (22)The following elementary transformations prove the existene of suh a T . Assumew.l.o.g. that������ XS : Fn(S)>Fn(S0) exp��2(Fn(S0)� Fn(S))� � XS : Fn(S)>Fn(S0) exp��1(Fn(S0)� Fn(S))������� ������� XS : Fn(S)<Fn(S0) exp��2(Fn(S0)� Fn(S))� � XS : Fn(S)<Fn(S0) exp��1(Fn(S0)� Fn(S))�������(The other ase an be handled analogously.) Then we have����1� Qn(�1) � exp(�1 � Fn(S0))Qn(�2) � exp(�2 � Fn(S0)) ���� = �������1� 1 + PS2Sn:S 6=S0 exp(�1 � (Fn(S0)� Fn(S))1 + PS2Sn:S 6=S0 exp(�2 � (Fn(S0)� Fn(S)) ������� ������ PS : Fn(S)>Fn(S0) h exp��2 � (Fn(S0)� Fn(S))�� exp��1 � (Fn(S0)� Fn(S))�i�����PS : Fn(S)>Fn(S0) exp��2 � (Fn(S0)� Fn(S))� =



An asymptotial study by means of statistial mehanis 9����� PS : Fn(S)>Fn(S0) exp��1 � (Fn(S0)� Fn(S))�h exp�(�2 � �1) � (Fn(S0)� Fn(S))� � 1i�����PS : Fn(S)>Fn(S0) exp��2 � (Fn(S0)� Fn(S))� �
� ����� PS : Fn(S)>Fn(S0) h exp�(�2 � �1) � (Fn(S0)� Fn(S))�� 1i�����PS : Fn(S)>Fn(S0) exp��2 � (Fn(S0)� Fn(S))� :We now show that������ XS : Fn(S)>Fn(S0) h exp�(�2 � �1) � (Fn(S0)� Fn(S))�� 1i������ �1� � (�2 � �1) � XS : Fn(S)>Fn(S0) exp h�2 � (Fn(S0)� Fn(S))i: (23)Indeed, inequality (23) follows from the following inequalities whih hold for all S 2 Snsuh that Fn(S) � Fn(S0).��� exp�(�2 � �1) � (Fn(S0)� Fn(S))� � 1��� � (�2 � �1) � 1Xi=1 (�2 � �1)i�1 � (Fn(S)� Fn(S0))ii!� (�2 � �1) � 1� � 1Xi=1 (�2)i � (Fn(S)� Fn(S0))ii!� (�2 � �1) � 1� � exp h�2 � (Fn(S)� Fn(S0))i:By putting things together we get (22) with T := 1� .We return at (21) and obtain:��G0n(�1)�G0n(�2)�� �M � 1� � (�2 � �1) � XS2Sn exp(��1 � Fn(S))Qn(�1) =M � 1� � (�2 � �1);from whih the equiontinuity of G0n on [�;1) obviously follows.Due to (10), (14) and (17) we have limk!1Gnk(�) = ��l. Then, due to the uniformonvergene of the above sequene together with the sequene of its derivatives we getlimk!1G0nk(�) = � limk!1Gnk(�)�0 = �l :



An asymptotial study by means of statistial mehanis 10Lemma 4.4 E � l, where E and l are de�ned above.Proof. Consider the expeted value E(Fn(S)) of the objetive funtion value of problemPn, S 2 Sn (with respet to the distribution of the random variables fn(e); e 2 En). Wehave E (Fn(S)) = snE and hene E (Fn (S)sn ) = E. This implies that F �nsn � E 8n 2 N.Then, sine l is de�ned as the limit of a subsequene of F �nsn , we have l � E.At this point there are two possibilities: either l = E and E is the (unique) limit of F �nsn ,or there exists a luster point l of F �nsn suh that l < E. In the �rst ase the main resultfollows immediately. We show that the seond ase almost surely annot happen.Assume that l < E throughout the rest of this setion. Clearly, in this ase the onver-gene of Gnk and G0nk is not uniform over the whole [0;1) (f. Lemma 4.1). Aordingto Lemma 4.3, however, limk!1G0nk(�) = �l uniformly on [�;1) for eah � > 0, andlimk!1G0nk(0) = �E < �l, due to Lemma 4.1. Under these onditions, for all K > 0and for all m 2 N there must be some �0 � 0 and some k0 2 N, k0 > m, suh thatG00nk0 (�0) � K. Indeed, given a K > 0, we hoose " = (E� l)=4 and � = E�l2K , and applythe above mentioned onvergene result on [�;1) and at � = 0. For k0 large enough wehave G0nk0 (�) > �l � " and G0nk0 (0) < �E + ". Thus, by the mean value theorem,�G00nk0 (�0) = G0nk0 (�) �G0nk0 (0) > E � l � 2" = E � l2 ;for some �0 2 [0; �℄. The last equality implies that G00nk0 (�0) � K. Thus the seondderivatives G00nk(�) are unbounded as k approahes in�nity and � approahes 0. We showthat almost surely this annot be the ase, beause: a) The third derivative G000nk(�) isalmost surely non-positive for � � 0 and b) the sequene of seond derivatives G00n(0)is almost surely bounded. Combining a) and b) with the nonnegativity of the seondderivative G00n(�) = �Fn(S)(�)sn (f. (9)) for all n 2 N and � � 0, yields the desiredontradition. The fats a) and b) are proven in the next two lemmata.Lemma 4.5 The third derivative G000nk(�) is almost surely non-positive for k � k0, � � 0,where k0 is some �xed natural number.Proof. We haveG000nk(�) = 1snk [�Fnk(S)(�)℄0 = 1snk 24 XS2Snk hFnk(S)� hFnki(�)i2 e�Fnk (S)�Qnk(�) 350 ;where h�i(�) denotes the expetation w.r.t. the Boltzmann distribution with parameter�. It follows thatG000nk(�) = 1snk 24 XS2Snk 2�Fnk(S)� hFnki(�)�e�Fnk (S)�Qnk(�) �hF 2nki(�)Qnk(�) � hFnki2(�)�++ XS2Snk hFnk(S)� hFnki(�)i2�� Fnk(S)e�Fnk (S)�Qnk(�) + hFnki(�)e�Fnk (S)�Qnk(�) �35 =



An asymptotial study by means of statistial mehanis 11= 1snk �0 � XS2Snk �Fnk(S) � hFnki(�)�3 e�Fnk (S)�Qnk(�) � = �D�Fnk � hFnki(�)�3E(�)snk :Hene it is enough to show that Fnk(S)� hFnki(�) � 0; 8 � � 0; almost surely. Indeed,for all S 2 Snk , Fnk(S) = Pe2S fnk(e) is the sum of snk independent and identiallydistributed random variables with E (fnk (e)) = E. Thus, aording to the strong law oflarge numbers, we have Pr� limk!1 ����Fnk(S)snk �E���� = 0� = 1 :At the same time, we have for all � > 0Pr� limk!1 ����hFnki(�)snk � l���� = 0� = 1 ;due to the uniform onvergene of �G0nk(�) = hFnk i(�)snk to l on any interval [�;1), � > 0.The inequality E > l, together with Lemma 4.1 for the ase � = 0, thus implies thatFnk(S)� hFnki(�) � 0 a:s: for all � � 0, as desired.Lemma 4.6 The sequene of the seond derivatives G00n(0) is almost surely bounded.Proof. Sine G00n(0) = �Fn(S)(0)sn � 0, we have by Markov's inequalityPr �G00n(0) > K� � E�G00n(0)�Kfor every K > 0, where E denotes the expetation w.r.t. the distribution of the randomvariables fn(e); e 2 En. Now we haveE�G00n(0)� = E 0� 1sn jSnj XS2Sn F 2n(S)� 1sn jSnj2  XS2Sn Fn(S)!21A= 1sn jSnj E 0�XS2Sn Xe2S fn(e)!21A� 1sn jSnj2 E  XS2SnXe2S fn(e)!2= 1sn E  Xe2S fn(e)!2 � �2nsn jSnj2 E  Xe2En fn(e)!2= 1sn �snD + s2nE2�� �2nsn jSnj2 �jEnjD + jEnj2E2�= D�1� snjEnj� � D;where we have used the equality �njEnj = snjSnj. Thus, for any K > 0,Pr �G00n(0) > K� � DK :Sine D = Var (fn(e)) is �nite, it follows that G00n(0) is almost surely bounded.



An asymptotial study by means of statistial mehanis 12Summarizing, if l < E, the seond derivatives G00nk almost surely have to be boundedand unbounded at the same time. This implies that l < E an not happen. Thus l = Ea.s. and Theorem 3.1 holds.Remark: The proof tehnique an also be interpreted as follows: Sine hFni(�)sn =jG0n(�)j � M is bounded, for eah � � 0 there exists a onvergent subsequene suhthat limk!1 hFnk i(�)snk (�) = l(�). In the proof it is shown that l(�) does not depend on �and l = E almost surely, from whih it follows thatlimn!1 hFni(�)sn = E almost surely for any � 2 [0;1): (24)Reall that hFni(�) denotes the expetation of Fn(S) w.r.t. the Boltzmann weight withparameter � assigned to eah admissible solution S 2 Sn. The right hand side of (24)being independent of �, Theorem 3.1 an now be dedued for � ! 1, sine for anyS0 2 Sn we have (see e.g. Aarts and Korst [1℄)lim�!1Pr(S0) = lim�!1 e�Fn(S0)�Qn(�) = lim�!1 e�Fn(S0)�PS2Sn e�Fn(S)�= lim�!1 e��(Fn(S0)�F �n)jS�nj+ PS2SnnS�n e��(Fn(S)�F �n) = � 1jS�nj for S0 2 S�n0 for S0 2 Sn n S�n;where S�n � Sn is the set of optimal solutions of problem Pn, and thus for all n 2 N wehave lim�!1hFni(�) = F �n .5 Disussion and open questionsLet us shortly disuss onditions (P1)-(P4). (P3) is a probabilisti ondition on theoeÆients of the problem and we will ome bak to that later on. Condition (P4)is a ruial, purely ombinatorial ondition, whih is used in Lemma 4.3 to show thepointwise onvergene of Gnk(�) and this is the simplest kind of onvergene whih hasto hold in order to get through with the other lemmata. A nie feature of our proof ofthe main result is that is shows expliitly the importane of ondition (P4). Note that(P4) is essential for deriving any of the results existing in the literature on problemswhih show an asymptoti behavior similar to the one desribed by Theorem 3.1 (e.g.results BF1, BF2 and FHR).Conditions (P1) and (P2) desribe the ombinatorial struture of the set of feasiblesolutions. (P1) haraterizes the feasible solutions from a quantitative point of viewsaying that all feasible solutions have the same ardinality. (P2) desribes the set offeasible solutions from a strutural point of view showing how often an element of theground set appears in some feasible solution. The fat that this frequeny index isonstant among di�erent elements from the ground set means that the feasible solutionsare distributed somehow uniformly in the ground set. It is an open question whetherondition (P1) an be dropped or substituted by a weaker one. Szpankowski [18℄ showedin his purely probabilisti proof of Theorem 3.1, that (P2) an be dropped, if in additionF �n is a noninreasing funtion of n and jSn+1j � jSnj for all n 2 N.



An asymptotial study by means of statistial mehanis 13Conditions (P1) and (P2) are ful�lled by many ombinatorial optimization problems.(P4) is a more restritive ondition and it is essential for the orretness of the mainresult. As an illustrating example onsider that the QAP ful�lls all these onditionswhereas the linear assignment problem (LAP) ful�lls only (P1) and (P2) but not (P4).Indeed, the QAP of size n an be formulated as a general ombinatorial optimizationproblem with a ground setEn = f(i; j; k; l) : 1 � i; j; k; l � n suh that i = j if and only if k = lg ;feasible solutions S� = f(i; j; �(i); �(j)) : 1 � i; j � ngfor � being a permutation of 1; 2; : : : ; n, and the set of feasible solutionsSn = fS� : � is a permutation of 1; 2; : : : ; ng ;(see also [6℄). Clearly jEnj = O(n4), jS�j = n2 for any permutation �, jSnj = n!, andondition (P4) is ful�lled, sine ln(n!)n2 = o(1). Eah element (i; j; k; l) of the ground setappears in (n�2)! feasible solutions, namely in all S� orresponding to some permutation� for whih �(i) = k, �(j) = l. Thus �n = (n� 2)!.For the linear assignment problem of size n the ground set �En is given by �En =f(i; j) : 1 � i; j � ng, the feasible solutions are given by �S� = f(i; �(i)) : 1 � i � ng, forsome permutation � of 1; 2; : : : ; n, and the set of feasible solutions �Sn is given as�Sn = f �S� : � is a permutation of 1; 2; : : : ; ng :In this ase we have j �Snj = n!, j �S�j = n for all permutations �, j �Enj = n2, and eah pair(i; j), belongs to (n�1)! feasible solutions orresponding to permutations whih assign ito j. Thus �n = (n�1)!. Notie however, that ondition (P4) is not ful�lled beause lnn!ntends to 1 as n approahes in�nity. It an be heked that the result of Theorem 3.1does not hold in the ase of the LAP. Indeed, onsider an LAP with ost oeÆientsuniformly and independently distributed on [0; 1℄. As shown by Karp [11℄, the expetedoptimal value of this problem E(F �n ) is bounded from above by 2. Theorem 3.1 wouldnow imply Pr(limn!1 F �nn = 12 ) = 1, leading toPr �9 n0 suh that F �n � n4 for n � n0� = 1 ;whih ontradits the boundedness of F �n . Thus Theorem 3.1 annot hold in this ase.Now let us turn to ondition (P3). A standard assumption in the literature onerningthe asymptoti behavior of ombinatorial optimization problems is that the oeÆientsof the problem are independent random variables with a ommon distribution (and notneessarily bounded). Also the assumption of �nite variane and higher order momentsan be onsidered as a natural one (while being redundant in ase of bounded ost o-eÆients). Szpankowski [18℄ showed that in suh a ase under additional monotoniityassumptions on F �n and jSnj, Theorem 3.1 an be proved by purely probabilisti teh-niques. One an ask, however, what happens in our proof of the main theorem withour set of assumptions in ase that the ost oeÆients fn(e) are not bounded, but



An asymptotial study by means of statistial mehanis 14distributed on [0;+1), while ful�lling all other requirements in (P3). We an observethat the boundedness of the oeÆients has only been exploited in the proofs of Lemma4.2 and Lemma 4.3 to show that the sequenes F �nsn and G0n(�), � � 0, are bounded. Ofourse, if we drop the boundedness ondition on fn(e), the boundedness of the abovesequenes annot be guaranteed.However, given that the �rst two moments of fn(e) are �nite, the probability that Fn(S)snis bounded tends to 1 as the size n of the problem tends to in�nity for any S 2 Sn.Indeed, reall that E (Fn(S)) = snE, Var (Fn(S)) = snD, and therefore E � Fn(S)sn � = Eand Var (Fn(S)sn ) = Dsn . By applying Chebyshev's inequality we getPr�Fn(S)sn � K� � Pr�����Fn(S)sn �E���� � K �E� � D2s2n(K �E)2 ;for any K > E. Sine sn ! 1 as n approahes in�nity, Lemma 4.2 and Lemma 4.3hold in probability. This implies that also our main result holds in probability in thease that the oeÆients of the problem are unbounded.Corollary 5.1 Let a ombinatorial optimization problem be given as in (2). Assumethat the osts fn(e), n 2 N, e 2 En, are random variables identially and independentlydistributed on [0;+1) with �nite expetation and variane. Assume moreover that theproperties (P1), (P2), and (P4) are ful�lled. Then F �nsn onverges in probability to E asthe size n of the problem tends to in�nity, i.e.8� > 0; limn!1Pr�����F �nsn �E���� < �� = 1: (25)It remains an open question whether the stronger onvergene result for unboundedost oeÆients an be obtained through the statistial mehanis formalism. Anotherquestion of general interest arises when making an analogy with simulated annealing asanother statistial mehanis approah in ombinatorial optimization. Is there any lassof problems whih is well suited for simulated annealing? Is this lass haraterized byany ombinatorial property? Clearly, this is a rather omplex question and its ompleteanswer seems to be urrently out of sight.Finally, let us briey disuss the result presented in this paper in omparison to existingresults on the asymptoti behavior of ombinatorial optimization problems presentedin [6, 18℄. The \in probability" version of the result presented in this paper followsfrom the result of Burkard and Finke [6℄, whereas the \almost sure" version does not.The stronger version of our result, the \almost sure" version, is the same as the resultobtained by Szpankowski [18℄ under slightly di�erent onditions. It is worthy to notie,however, that our proof tehnique is ompletely di�erent from the purely probabilistitehniques applied in [6, 18℄ and provides a further appliation of the useful analogybetween statistial mehanis and ombinatorial optimization. Another nie feature ofour proof is that it reveals the importane of the ombinatorial ondition (P4): Thepointwise onvergene of the expeted value of the objetive funtion an only be shownif that ombinatorial ondition is ful�lled.Aknowledgements. The authors are indebted to anonymous referees for valuableremarks onerning the presentation of the paper.
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