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Leonidas S. Pitsoulis‡

Abstract

This paper aims at describing the state of the art on quadratic assignment problems
(QAPs). It discusses the most important developments in all aspects of the QAP
such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality,
heuristics, polynomially solvable special cases, and asymptotic behavior. Moreover, it
also considers problems related to the QAP, e.g. the biquadratic assignment problem,
and discusses the relationship between the QAP and other well known combinatorial
optimization problems, e.g. the traveling salesman problem, the graph partitioning
problem, etc.
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1 Introduction

The quadratic assignment problem (QAP) was introduced by Koopmans and Beckmann in
1957 as a mathematical model for the location of a set of indivisible economical activities
[113]. Consider the problem of allocating a set of facilities to a set of locations, with the
cost being a function of the distance and flow between the facilities, plus costs associated
with a facility being placed at a certain location. The objective is to assign each facility
to a location such that the total cost is minimized. Specifically, we are given three n × n
input matrices with real elements F = (fij), D = (dkl) and B = (bik), where fij is the flow
between the facility i and facility j, dkl is the distance between the location k and location
l, and bik is the cost of placing facility i at location k. The Koopmans-Beckmann version
of the QAP can be formulated as follows: Let n be the number of facilities and locations
and denote by N the set N = {1, 2, . . . , n}.

min
φ∈Sn

n∑

i=1

n∑

j=1

fijdφ(i)φ(j) +

n∑

i=1

biφ(i) (1)

where Sn is the set of all permutations φ : N → N . Each individual product fijdφ(i)φ(j) is
the cost of assigning facility i to location φ(i) and facility j to location φ(j). In the context
of facility location the matrices F and D are symmetric with zeros in the diagonal, and all
the matrices are nonnegative. An instance of a QAP with input matrices F,D and B will
be denoted by QAP (F,D,B), while we will denote an instance by QAP (F,D), if there is
no linear term (i.e., B = 0).

A more general version of the QAP was introduced by Lawler [118]. In this version we are
given a four-dimensional array C = (cijkl) of coefficients instead of the two matrices F and
D and the problem can be stated as

min
φ∈Sn

n∑

i=1

n∑

j=1

cijφ(i)φ(j) +

n∑

i=1

biφ(i) (2)

Clearly, a Koopmans-Beckmann problem QAP (F,D,B) can be formulated as a Lawler
QAP by setting cijkl := fijdkl for all i, j, k, l with i 6= j or k 6= l and ciikk := fiidkk + bik,
otherwise.

Although extensive research has been done for more than three decades, the QAP, in
contrast with its linear counterpart the linear assignment problem (LAP), remains one of
the hardest optimization problems and no exact algorithm can solve problems of size n > 20
in reasonable computational time. In fact, Sahni and Gonzalez [164] have shown that the
QAP is NP-hard and that even finding an approximate solution within some constant factor
from the optimal solution cannot be done in polynomial time unless P=NP. These results
hold even for the Koopmans-Beckmann QAP with coefficient matrices fulfilling the triangle
inequality (see Queyranne [152]). So far only for a very special case of the Koopmans-
Beckmann QAP, the dense linear arrangement problem a polynomial time approximation
scheme has been found , due to Arora, Frieze, and Kaplan [7]. Complexity aspects of the
QAP will be discussed in more detail in Section 3.

Let us conclude this section with a brief review of some of the many applications of
the QAP. In addition to facility layout problems, the QAP appears in applications such as
backboard wiring, computer manufacturing, scheduling, process communications, turbine
balancing, and many others.
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One of the earlier applications goes back to Steinberg [168] and concerns backboard
wiring. Different devices such as controls and displays have to be placed on a panel, where
they have to be connected to each other by wires. The problem is to find a positioning of
the devices so as to minimize the total wire length. Let n be the number of devices to be
placed and let dkl denote the wire length from position k to position l. The flow matrix
F = (fij) is given by

fij =

{
1 if device i is connected to device j,
0 otherwise.

Then the solution to the corresponding QAP will minimize the total wire length. Another
application in the context of location theory is a campus planning problem due to Dickey
and Hopkins [58]. The problem consists of planning the sites of n buildings in a campus,
where dkl is the distance from site k to site l, and fij is the traffic intensity between
building i and building j The objective is to minimize the total walking distance between
the buildings.

In the field of ergonomics Burkard and Offermann [36] showed that QAPs can be applied
to typewriter keyboard design. The problem is to arrange the keys in a keyboard such as
to minimize the time needed to write some text. Let the set of integers N = {1, 2, . . . , n}
denote the set of symbols to be arranged. Then fij denotes the frequency of the appearance
of the pair of symbols i and j. The entries of the distance matrix D = dkl are the times
needed to press the key in position l after pressing the key in position k for all the keys to
be assigned. Then a permutation φ ∈ Sn describes an assignment of symbols to keys An
optimal solution φ∗ for the QAP minimizes the average time for writing a text. A similar
application related to ergonomic design, is the development of control boards in order to
minimize eye fatigue by McCormick [126]. There are also numerous other applications of
the QAP in different fields e.g. hospital lay-out (Elshafei [63]), ranking of archeological
data (Krarup and Pruzan [114]), ranking of a team in a relay race (Heffley [93]), scheduling
parallel production lines (Geoffrion and Graves [76]), and analyzing chemical reactions for
organic compounds (Ugi, Bauer, Friedrich, Gasteiger, Jochum, and Schubert [173]).

2 Formulations

For many combinatorial optimization problems there exist different, but equivalent mathe-
matical formulations, which stress different structural characteristics of the problem, which
may lead to different solution approaches. Let us start with the observation that every per-
mutation φ of the set N = {1, 2, . . . , n} can be represented by an n × n matrix X = (xij),
such that

xij =

{
1 if φ(i) = j,
0 otherwise.

Matrix X is called a permutation matrix and is characterized by following assignment
constraints

n∑

i=1

xij = 1, j = 1, 2, . . . , n,

n∑

j=1

xij = 1, i = 1, 2, . . . , n,

xij ∈ {0, 1}, i, j = 1, 2, . . . , n.
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We denote the set of all permutation matrices by Xn. Due to a famous theorem of Birkhoff
the permutation matrices correspond in a unique way to the vertices of the assignment
polytope ( the Birkhoff polytope, the perfect matching polytope of Kn,n etc.). This leads
to the following description of a QAP as quadratic integer program.

2.1 Quadratic Integer Program Formulation

Using permutation matrices instead of permutations, the QAP ((2) can be formulated as
the following integer program with quadratic objective function (hence the name Quadratic
Assignment Problem by Koopmans and Beckmann [113]).

min
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

cijklxikxjl +
n∑

i,j=1

bijxij (3)

s.t.

n∑

i=1

xij = 1, j = 1, 2, . . . , n, (4)

n∑

j=1

xij = 1, i = 1, 2, . . . , n, (5)

xij ∈ {0, 1}, i, j = 1, 2, . . . , n. (6)

¿From now on, whenever we write (xij) ∈ Xn, it will be implied that the xij satisfy the
assignment constraints (4), (5) and (6).

Many authors have proposed methods for linearizing the quadratic form of the objective
function (3) by introducing additional variables; some of these of linearizations will be
discussed in Section 4.

A QAP in Koopmans-Beckmann form can be formulated in a more compact way if we
define an inner product between matrices. Let the inner product of two real n×n matrices
A,B be defined by

〈A,B〉 :=
n∑

i=1

n∑

j=1

aijbij .

Given some n× n matrix A, a permutation φ ∈ Sn and the associated permutation matrix
X ∈ Xn, then AXT and XA permute the columns and rows of A, respectively, according
to the permutation φ and therefore

XAXT = (aφ(i)φ(j)).

Thus we can formulate a Koopmans-Beckmann QAP alternatively as

min 〈F,XDXT 〉 + 〈B,X〉 (7)

s.t. X ∈ Xn.

2.2 Concave Quadratic Formulation

In the objective function of (3), let the coefficients cijkl be the entries of an n2 ×n2 matrix
S, such that cijkl is on row (i − 1)n + k and column (j − 1)n + l. Now let Q := S − αI,
where I is the (n2×n2) unit matrix and α is greater than the row norm ‖S‖∞ of matrix
S. The subtraction of a constant from the entries on the main diagonal of S does not
change the optimal solutions of the corresponding QAP, it simply adds a constant to the
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objective function. Hence we can consider a QAP with coefficient array Q instead of S. Let
x = (x11, x12, . . . , x1n, x21, . . . , xnn)

t = (x1, . . . , xnn)
t. Then we can rewrite the objective

function of the QAP with array of coefficients Q as a quadratic form xTQx, where:

xTQx =
n2∑

i=1

qiix
2
i + 2

n2−1∑

i=1

n2∑

j=i+1

qijxixj

=

n2∑

i=1

(qii +

n2∑

j=1

j 6=i

qij)x
2
i −

n2−1∑

i=1

n2∑

j=i+1

qij(xi − xj)
2

=

n2∑

i=1

(−α+

n2∑

j=1

sij)x
2
i −

n2−1∑

i=1

n2∑

j=i+1

sij(xi − xj)
2

≤
n2∑

i=1

(−α+

n2∑

j=1

sij)x
2
i .

Since xT [1/2(Q+QT )]x = 1/2xTQx, we can assume that Q is symmetric and negative
definite. Therefore we have a quadratic concave minimization problem and can formulate
the QAP as

min xTQx

s.t.
n∑

i=1

xij = 1, j = 1, 2, . . . , n, (8)

n∑

j=1

xij = 1, i = 1, 2, . . . , n,

xij ≥ 0, i, j = 1, 2, . . . , n.

Bazaraa and Sherali [16] introduced the above formulation, and used it to derive cutting
plane procedures. Although their exact methods were computationally not efficient, heuris-
tics derived from these procedures produced suboptimal solutions of good quality.

By adding the term αI to the matrix Q instead of subtracting it, we could always
assume that the objective function of the QAP is convex. This leads to the formulation of
the QAP as a quadratic convex minimization problem.

2.3 Trace Formulation

The trace of an n× n matrix B is defined to be the sum of its diagonal elements, i.e.:

trB :=
n∑

i=1

bii.

Consider a Koopmans-Beckmann QAP instance with input matrices F , D and B. Letting
D̄ = XDTXT , then

tr(FD̄) =

n∑

i=1

n∑

j=1

fij d̄ji =

n∑

i=1

n∑

j=1

fijdφ(i)φ(j),
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since d̄ji = dφ(i)φ(j), i, j = 1, . . . , n, where φ ∈ Sn is the permutation associated with X

(see 2.1). Since tr(BXT ) =
∑n

i=1 biφ(i), the QAP in (7) can be formulated as

min tr(FXDT +B)XT (9)

s.t. X ∈ Xn.

The trace formulation of the QAP first appeared in Edwards [61, 62], and was used by
Finke, Burkard, and Rendl [67] to introduce the eigenvalue lower bounding techniques for
symmetric QAPs (see Section 7.1). Given any two real n× n matrices A,B, recall the well
known properties tr(AB) = tr(BA), (AB)T = BTAT and trA = trAT . For F = F T we
can then write the quadratic term in (9) as

trFXDTXT = trFXDXT ,

where D is not necessarily symmetric. Therefore, given a QAP instance where only one
of the matrices is symmetric (say F ), we can transform it into a QAP instance where
both matrices are symmetric. This is done by introducing a new symmetric matrix E =
1
2(D +DT ):

trFXETXT =
1

2
tr(FXDTXT + FXDXT ) = trFXDTXT .

2.4 Kronecker Product

Let A be a real m×n matrix and let B be a real p× q matrix. Then the Kronecker product
of matrices A and B is defined as

A⊗B :=




a11B a12B · · · a1nB
...

...
. . .

...
am1B am2B · · · amnB


 .

That is, A⊗ B is the mp × nq matrix formed from all possible pairwise element products
of A and B. If we let vec(X) ∈ IRn2

be the vector formed by the columns of a permutation
matrix X, the QAP can be formulated as

min vec(X)T (F ⊗D)vec(X) + vec(B)T vec(X), (10)

s.t. X ∈ Xn.

Operations using the Kronecker product and its properties have been studied in detail
by Graham [84]. However, the above formulation is rarely used in investigations of the
QAP. Based on that formulation Lawler [118] gave an alternative formulation of the QAP
as a linear assignment problem (LAP) of size n with the additional constraint that only
(n2×n2) permutation matrices which are Kronecker products of n×n permutation matrices
are feasible. If as before the (n2×n2) cost matrix C contains the n4 costs cijkl, such that the
(ijkl)-th element corresponds to the element in the ((i−1)n+k)-th row and ((j−1)n+l)-th
column of C, the QAP can be written as

min 〈C, Y 〉
s.t. Y = X ⊗X, (11)

X ∈ Xn.

Because of the additional constraint to be fulfilled by the feasible solutions the resulting
LAP cannot be solved efficiently.
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3 Computational complexity

The results described in this section bring evidence to the fact that the QAP is a “very
hard” problem from the theoretical point of view. Not only that the QAP cannot be solved
efficiently but it even cannot be approximated efficiently within some constant approxima-
tion ratio. Furthermore, finding local optima is not a trivial task even for simply structured
neighborhoods like the 2-opt neighborhood.

Two early results obtained by Sahni and Gonzalez [164] in 1976 settled the complexity
of solving and approximating the QAP. It was shown that the QAP is NP-hard and that
even finding an ǫ-approximate solution for the QAP is a hard problem, in the sense that the
existence of a polynomial ǫ-approximation algorithm implies P = NP . In the following, let
Z(F,D, φ) denote the objective function value of a solution φ for a QAP with flow matrix
F and distance matrix D.

Definition 3.1 Given a real number ǫ > 0, an algorithm Υ for the QAP is said to be an
ǫ-approximation algorithm if

∣∣∣∣∣
Z(F,D, πΥ) − Z(F,D, πopt)

Z(F,D, πopt)

∣∣∣∣∣ ≤ ǫ , (12)

holds for every instance QAP (F,D), where πΥ is the solution of QAP (F,D) computed by
algorithm Υ and πopt is an optimal solution of QAP (F,D). The solution of QAP (F,D)
produced by an ǫ-approximation algorithm is called an ǫ-approximate solution.

Theorem 3.2 (Sahni and Gonzalez [164], 1976)
The quadratic assignment problem is strongly NP-hard.
For an arbitrary ǫ > 0, the existence of a polynomial time ǫ-approximation algorithm for
the QAP implies P = NP.

The proof is done by a reduction from the Hamiltonian cycle problem: Given a graph G,
does G contain a cycle which visits each vertex exactly once (see [73])?

Queyranne [152] derives an even stronger result which further confirms the widely spread
belief on the inherent difficulty of the QAP in comparison with other difficult combinatorial
optimization problems. It it well known and very easy to see that the traveling salesman
problem (TSP) is a special case of the QAP. The TSP on n cities can be formulated as a
QAP (F,D) where F is the distance matrix of the TSP instance and D is the adjacence ma-
trix of a Hamiltonian cycle on n vertices. In the case that the distance matrix is symmetric
and satisfies the triangle inequality, the TSP is approximable in polynomial time within 3/2
as shown by Christofides [46]. Queyranne [152] showed that, unless P = NP , QAP (A,B)
is not approximable in polynomial time within some finite approximation ratio, even if A
is the distance matrix of some set of points on a line and B is a symmetric block diagonal
matrix.

A more recent result of Arora, Frieze and Kaplan [7] answers partially one of the open
questions stated by Queyranne in [152]. What happens if matrix A is the distance matrix
of n points which are regularly spaced on a line, i.e., points with abscissae given by xp = p,
p = 1, . . . , n? This special case of the QAP is termed linear arrangement problem and is
a well studied NP-hard problem. In the linear arrangement problem the matrix B is not
restricted to have the block diagonal structure mentioned above, but is simply a symmetric
0-1 matrix. Arora et al. give a polynomial time approximation scheme (PTAS) for the
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linear arrangement problem in the case that the 0-1 matrix B is dense, i.e., the number of
1 entries in B is in Ω(n2), where n is the size of the problem. They show that for each ǫ > 0
there exists an ǫ-approximation algorithm for the dense linear arrangement problem with
time complexity depending polynomially on n and exponentially on 1/ǫ, hence polynomial
for each fixed ǫ > 0.

Recently it has been shown that even finding a locally optimal solution of the QAP
can be prohibitively hard, i.e., even local search is hard in the case of the QAP. Below we
formalize this idea to some extent.

Assume that an optimization problem P is given by specifying a ground set E , a set
F ⊆ 2E of feasible solutions and a cost function c : E → IR. This cost function c implies an
objective function f : F → IR defined by f(S) =

∑
x∈S c(x), for all S ∈ F . The goal is to

find a feasible solution which minimizes the objective function. For every feasible solution
S ∈ F let a neighborhood N (S) ⊂ F of S be given. This neighborhood consists of feasible
solutions which are somehow “close” to S. Now, instead of looking for a globally optimal
solution S∗ ∈ F of the problem P , that is

f(S∗) = min
S∈F

f(S),

we look for a locally optimal solution or a local minimum of P , that is an S̄ ∈ F such that

f(S̄) = min
S∈N (S̄)

f(S).

An algorithm which produces a locally optimal solution, is frequently called a local search
algorithm. Some local search algorithms for the QAP are described in Section 8.

Let us consider the intriguing question “Is it easy to find a locally optimal solution
for the QAP?”. Clearly the answer depends on the involved neighborhood structure. If
the neighborhoods N (S) are replaced by new neighborhoods N ′(S), one would generally
expect changes in the local optimality status of a solution. The theoretical basis for facing
this kind of problems was introduced by Johnson, Papadimitriou and Yannakakis in [97].
They define the so-called polynomial-time local search problems, shortly PLS problems. A
pair (P,N ), where P is a (combinatorial) optimization problem P and N is an associated
neighborhood structure, defines a local search problem which consists of finding a locally
optimal solution of P with respect to the neighborhood structure N . Without going into
technical details a PLS problem is a local search problem for which local optimality can
be checked in polynomial time. In analogy with decision problems, there exist complete
problems in the class of PLS problems. The PLS-complete problems, are – in the usual
complexity sense – the most difficult among the PLS problems.

Murthy, Pardalos and Li [138] introduce a neighborhood structure for the QAP which
is similar to the neighborhood structure proposed by Kernighan and Lin [109] for the graph
partitioning problem. For this reason we will call it a K-L type neighborhood structure for
the QAP. Murthy et al. show that the corresponding local search problem is PLS-complete.

A K-L type neighborhood structure for the QAP. Consider a permutation φ0 ∈
Sn. A swap of φ0 is a permutation φ ∈ Sn obtained from φ0 by applying a transposition
(i, j) to it, φ = φ0 ◦ (i, j). A transposition (i, j) is defined as a permutation which maps i to
j, j to i, and k to k for all k 6∈ {i, j}. In the facility location context a swap is obtained by
interchanging the facilities assigned to two locations i and j. A greedy swap of permutation
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φ0 is a swap φ1 which minimizes the difference Z(F,D, φ)−Z(F,D, φ0) over all swaps φ of
φ0. Let φ0, φ1, . . . , φl be a set of permutations in Sn, each of them being a greedy swap of the
preceding one. Such a sequence is called monotone if for each pair of permutations φk, φt
in the sequence, {ik, jk} ∩ {it, jt} = ∅, where φk (πt) is obtained by applying transposition
(ik, jk) ((it, jt)) to the preceding permutation in the sequence. The neighborhood of φ0

consists of all permutations which occur in the (unique) maximal monotone sequence of
greedy swaps starting with permutation φ0. Let us denote this neighborhood structure
for the QAP by NK-L. It is not difficult to see that, given a QAP (F,D) of size n and a
permutation φ ∈ Sn, the cardinality of NK-L(π) does not exceed ⌊n/2⌋ + 1.

It is easily seen that the local search problem (QAP,NK-L) is a PLS problem. Pardalos,
Rendl, and Wolkowicz [147] have shown that a PLS-complete problem, namely the graph
partitioning problem with the neighborhood structure defined by Kernighan and Lin [109]
is PLS-reducible to (QAP,NK−L). This implies the following result.

Theorem 3.3 (Pardalos, Rendl and Wolkowicz [147], 1994)
The local search problem (QAP,NK-L), where NK-L is the Kernighan-Lin type neighborhood
structure for the QAP, is PLS-complete.

The PLS-completeness of (QAP,NK-L) implies that, in the worst case, a general local
search algorithm as described above involving the Kernighan-Lin type neighborhood finds
a local minimum only after a time which is exponential on the problem size. Numerical
results, however, show that such local search algorithms perform quite well when applied
to QAP test instances, as reported in [138].

Another simple and frequently used neighborhood structure in Sn is the so-called pair-
exchange (or 2-opt) neighborhood N2. The pair-exchange neighborhood of a permutation
φ0 ∈ Sn consists of all permutations φ ∈ Sn obtained from φ0 by applying some transposi-
tion (i, j) to it. Thus, N2(φ) = {φ ◦ (i, j) : 1 ≤ i, j ≤ n, i 6= j, }.
It can also be shown that (QAP,N2) is PLS-complete. Schäffer and Yannakakis [165] have
proven that the graph partitioning problem with a neighborhood structure analogous to N2

is PLS-complete. A similar PLS-reduction as in [147] implies that the local search problem
(QAP,N2), where N2 is the pair-exchange neighborhood, is PLS-complete. This implies
that the time complexity of a general local search algorithm for the QAP involving the
pair-exchange neighborhood is also exponential in the worst case.

Finally, let us mention that no local criteria are known for deciding how good a locally
optimal solution is as compared to a global one. ¿From the complexity point of view,
deciding whether a given local optimum is a globally optimal solution to a given instance
of the QAP, is a hard problem, see Papadimitriou and Wolfe [145].

4 Linearizations

The first attempts to solve the QAP eliminated the quadratic term in the objective function
of (2), in order to transform the problem into a (mixed) 0-1 linear program. The lineariza-
tion of the objective function is usually achieved by introducing new variables and new linear
(and binary) constraints. Then existing methods for (mixed) linear integer programming
(MILP) can be applied. The very large number of new variables and constraints, however,
usually poses an obstacle for efficiently solving the resulting linear integer programs.
MILP formulations provide moreover LP relaxations of the problem which can be used to
compute lower bounds. In this context the “tightness” of the continuous relaxation of the
resulting linear integer program is a desirable property.
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In this section we present four linearizations of the QAP: Lawler’s linearization [118],
which was the first, Kaufmann and Broeckx’s linearization [108], which has the smallest
number of variables and constraints, Frieze and Yadegar’s linearization [70] and the lin-
earization of Adams and Johnson [3]. The last linearization which is a slight but relevant
modification of the linearization proposed by Frieze and Yadegar [70], unifies most of the
previous linearizations and is important for getting lower bounds.

4.1 Lawler’s Linearization

Lawler [118] replaces the quadratic terms xijxkl in the objective function of (2) by n4

variables

yijkl := xijxkl, i, j, k, l = 1, 2, . . . , n,

and obtains in this way a 0-1 linear program with n4 +n2 binary variables and n4 +2n2 +1
constraints. Thus the QAP can be written as the following 0-1 linear program (see [118, 23])

min

n∑

i,j=1

n∑

k,l=1

cijklyijkl

s.t. (xij) ∈ Xn,
n∑

i,j=1

n∑

k,l=1

yijkl = n2, (13)

xij + xkl − 2yijkl ≥ 0, i, j, k, l = 1, 2, . . . , n,

yijkl ∈ {0, 1}, i, j, k, l = 1, 2, . . . , n.

4.2 Kaufmann and Broeckx Linearization

By adding a large enough constant to the cost coefficients, which does not change the opti-
mal solution, we may assume that all cost coefficients cijkl are nonnegative. By rearranging
terms in the objective function (2) we obtain

n∑

i,j=1

xij

n∑

k,l=1

cijklxkl. (14)

Kaufmann and Broeckx [108] define n2 new real variables

wij := xij

n∑

k,l=1

cijklxkl, i, j = 1, . . . , n, (15)

and plug them in the objective function of (14) to obtain a linear objective function of the
form

n∑

i,j=1

wij .
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Then they introduce n2 constants aij :=
∑n

k,l=1 cijkl for i, j = 1, . . . , n, and show that the
QAP (2) is equivalent to the following mixed 0-1 linear program

min
n∑

i,j=1

wij

s.t. (xij) ∈ Xn,

aijxij +

n∑

k,l=1

cijklxkl − wij ≤ aij, i, j = 1, . . . , n, (16)

wij ≥ 0, i, j = 1, 2, . . . , n.

This formulation employs n2 real variables, n2 binary variables and n2 + 2n constraints.
The proof of equivalence of the QAP to the mixed integer linear program (16) can be found
in [23, 108]. The above linearization, as well as others that appeared in the literature
(see e.g. [24, 29]), are obtained by applying the general linearization strategy proposed by
Glover [78].

4.3 Frieze and Yadegar Linearization

Frieze and Yadegar [70] replace the products xijxkl of the binary variables by continuous
variables yijkl (yijkl := xijxkl) and get the following mixed integer linear programming
formulation for the QAP (2)

min
n∑

i,j=1

n∑

k,l=1

cijklyijkl (17)

s.t. (xij) ∈ Xn, (18)
n∑

i=1

yijkl = xkl, j, k, l = 1, . . . , n, (19)

n∑

j=1

yijkl = xkl, i, k, l = 1, 2, . . . , n, (20)

n∑

k=1

yijkl = xij, i, j, l = 1, . . . , n, (21)

n∑

l=1

yijkl = xij, i, j, k = 1, 2, . . . , n, (22)

yijij = xij , i, j = 1, 2, . . . , n, (23)

0 ≤ yijkl ≤ 1, i, j, k, l = 1, 2, . . . , n. (24)

This mixed integer program has n4 real variables, n2 binary variables and n4+4n3+n2+2n
constraints. For obtaining a lower bound Frieze and Yadegar considered a Lagrangean
relaxation of this mixed integer program by relaxing the constraints (21) and (24) and
solved it approximately by applying subgradient optimization techniques. They showed
that the solution of the Lagrangean relaxation is larger than all lower bounds derived from
reduction techniques applied to the Gilmore-Lawler bound for the QAP (see Section 7.1).
¿From a result of Geoffrion [75] follows that the solution of the Lagrangean relaxation equals
the solution of the continuous relaxation of the mixed integer program (17)-(24).
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It is interesting to notice here that the gap between the optimal value of this continuous
relaxation and the optimal value of the QAP can be enormous. Dyer, Frieze, and Mc-
Diarmid [60] showed for QAPs whose coefficients cijkl are independent random variables
uniformly distributed on [0, 1] that the expected optimal value of the above mentioned
linearization has a size of O(n). On the other hand the expected optimal value of such
QAPs increases with high probability as Ω(n2), as shown by Burkard and Fincke [32]. Con-
sequences of this asymptotic behavior will be discussed in some detail in Section 12. No
similar asymptotic result is known for the continuous relaxation of the linearization due to
Adams and Johnson [3] which is presented in the following section.

4.4 Adams and Johnson Linearization

Adams and Johnson presented in [3] a new 0-1 linear integer programming formulation for
the QAP, which resembles to a certain extent the linearization of Frieze and Yadegar. It
is based on the linearization technique for general 0-1 polynomial programs introduced by
Adams and Sherali in [4, 5]. The QAP with array of coefficients C = (cijkl) is proved to be
equivalent to the following mixed 0-1 linear program

min

n∑

i,j=1

n∑

k,l=1

cijklyijkl (25)

s.t. (xij) ∈ Xn,

n∑

i=1

yijkl = xkl, j, k, l = 1, . . . , n,

n∑

j=1

yijkl = xkl, i, k, l = 1, 2, . . . , n,

yijkl = yklij, i, j, k, l = 1, . . . , n, (26)

yijkl ≥ 0, i, j, k, l = 1, 2, . . . , n,

where each yijkl represents the product xijxkl. The above formulation contains n2 binary
variables xij , n

4 continuous variables yijkl, and n4 + 2n3 + 2n constraints excluding the
nonnegativity constraints on the continuous variables. Although as noted by Adams and
Johnson [3] a significant smaller formulation in terms of both the variables and constraints
could be obtained, the structure of the continuous relaxation of the above formulation is
favorable for solving it approximately by means of the Lagrangean dual. (See Section 6.2
for more information.)

The theoretical strength of the linearization (25) lies in the fact that the constraints of the
continuous relaxations of previous linearizations can be expressed as linear combinations
of the constraints of the continuous relaxation of (25), see [3, 98]. Moreover, many of the
previously published lower-bounding techniques can be explained based on the Lagrangean
dual of this relaxation. For more details on this topic we refer to Section 6.2.

As noted by the Adams et al. [3], the constraint set of (25) describes a solution matrix
Y which is the Kronecker product of two permutation matrices (i.e., Y = X ⊗ X where
X ∈ Sn), and hence this formulation of the QAP is equivalent to (11).
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5 QAP Polytopes

A polyhedral description of the QAP and of some of his relatives have been recently in-
vestigated by Barvinok [12], Jünger and Kaibel [100, 101], Kaibel [102], and Padberg and
Rijal [142, 161]. Although in an early stage yet, the existing polyhedral theory around
the QAP counts already a number of results concerning basic features like dimensions,
affine hulls, and valid and facet defining inequalities for the general QAP polytope and the
symmetric QAP polytope.

The linearization of Frieze and Yadegar introduced in the previous section can be used
as a starting point for the definition of the QAP polytope. The QAP polytope is defined
as a convex hull of all 0-1 vectors (xij , yijkl), 1 ≤ i, j, k, l ≤ n, which are feasible solutions
of the MILP formulation of Frieze and Yadegar [70].

Another possibility to introduce the QAP polytope is the formulation of the QAP as a
graph problem as proposed by Jünger and Kaibel [100]. This formulation provides some
additional insight in the problem and allows an easier use of some technical tools e.g.
projections and affine transformations. The latter lead to a better understanding of the
relationship between the general QAP polytope and related polytopes, e.g. the symmetric
QAP polytope, or well studied polytopes of other combinatorial optimization problems like
the traveling salesman polytope or the cut polytope (see [102]).

For each n ∈ IN consider a graph Gn = (Vn, En) with vertex set Vn = {(i, j) : 1 ≤ i, j ≤
n} and edge set En = {((i, j), (k, l)) : i 6= k, j 6= l}. Clearly, the maximal cliques in Gn
have cardinality n and correspond to the permutation matrices. Given an instance of the
Lawler QAP with coefficients cijkl and linear term coefficients bij , we introduce bij as vertex
weights and cijkl as weight of the edge ((i, j), (k, l)). Solving the above QAP instance is
equivalent to finding a maximal clique with minimum total vertex- and edge-weight. For
each clique C in Gn with n vertices we denote its incidence vector by (xC , yC), where

xC ∈ IRn2
, yC ∈ IR

n2(n−1)2

2

xij =

{
1 if (i, j) ∈ C,

0 otherwise
yijkl =

{
1 if (i, j), (k, l) ∈ C,

0 otherwise

The QAP polytope denoted by QAPn is then given by

QAPn := conv{(xC , yC) : C is a clique with n vertices in Gn}.

It turns out that the traveling salesman polytope and the linear ordering polytope are pro-
jections of QAPn, and that QAPn is a face of the Boolean quadric polytope, see [102].

Barvinok [12], Padberg and Rijal [142], and Jünger and Kaibel [100] have independently
computed the dimension of QAPn, and have shown that the inequalities yijkl ≥ 0, i 6= k,
j 6= l, are facet defining. (These are usually called trivial facets of QAPn.) Moreover,
Padberg and Rijal [142], and Jünger and Kaibel [100] have independently shown that the
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affine hull of QAPn is described by the following equations which are linearly independent:

n∑

i=1

xij = 1, 1 ≤ j ≤ n− 1 (27)

n∑

j=1

xij = 1, 1 ≤ i ≤ n, (28)

−xkl +
k−1∑

i=1

yijkl +

n∑

i=k+1

yklij = 0
1 ≤ j 6= l ≤ n, 1 ≤ k ≤ n− 1,
or 1 ≤ l < j ≤ n, k = n

(29)

−xij +

j−1∑

l=1

yijkl +
n∑

l=j+1

yijkl = 0

1 ≤ j ≤ n, 1 ≤ i ≤ n− 3,
i < k ≤ n− 1 or
1 ≤ j ≤ n− 1, i = n− 2,
k = n− 1

(30)

−xkj +

j1∑

l1

yilkj +

n∑

l=j+1

yilkj = 0
1 ≤ j ≤ n− 1, 1 ≤ i ≤ n− 3,
i < k ≤ n− 1

(31)

Summarizing we get the following theorem:

Theorem 5.1 (Barvinok [12], 1992, Jünger and Kaibel [100], 1996, Padberg and Ri-
jal [142], 1996)

(i) The affine hull of the QAP polytope QAPn is given by the linear equations (27)-(31).
These equations are linearly independent and the rank of the system is 2n(n − 1)2 −
(n− 1)(n − 2), for n ≥ 3.

(ii) The dimension of QAPn is equal to 1+(n−1)2 +n(n−1)(n−2)(n−3)/2, for n ≥ 3.

(iii) The inequalities yijkl ≥ 0, i < k, j 6= l, define facets of QAPn.

Padberg and Rijal [142] identified additionally two classes of valid inequalities for QAPn,
the clique inequalities and the cut inequalities, where the terminology is related to the
graph Gn. The authors identify some conditions under which the cut inequalities are not
facet defining. It is an open problem, however, to identify facet defining inequalities within
these classes. A larger class of valid inequalities, the so-called box inequalities have been
described by Kaibel [102]. Those inequalities are obtained by exploiting the relationship
between the Boolean quadric polytope and the QAP polytope. A nice feature of the box
inequalities is that it can be decided efficiently whether they are facet defining or not, and
in the latter case some facet defining inequality which dominates the corresponding box
inequality can be derived.

Similar results have been obtained for the symmetric QAP polytope, SQAPn, arising
in the case that at least one of the coefficient matrices of the given QAP (matrices F ,
D in (1)) is symmetric. The definition of SQAPn is given by means of a hypergraph
Hn = (Vn, Fn), where Vn is the same set of vertices as in graph Gn and Fn is the set of
hyperedges {(i, j), (k, l), (i, l), (k, j)} for all i 6= k, j 6= l. A set C ⊂ Vn is called a clique in
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Hn if it is a clique in Gn. Again, the incidence vector (xC , yC) of a clique C is introduced
by

xij =

{
1 if (i, j) ∈ C

0 otherwise
yijkl =

{
1 if i < k, l 6= j, (i, j), (k, l) ∈ C

0 otherwise

Here, xC ∈ IRn2
and yC ∈ IR

n2(n−1)2

4 . The polytope SQAPn is then defined as

SQAPn := conv{(xC , yC) : C is a clique with n vertices in Gn}

Padberg and Rijal [142] and Jünger and Kaibel [101] showed that the following system of
equations (32)-(35) offers a minimal linear description of the affine hull of SQAPn.

n∑

j=1

xij = 1 1 ≤ i ≤ n (32)

n∑

i=1

xij = 1 1 ≤ j ≤ n− 1 (33)

−xij − xkj +

j−1∑

l=1

yilkj +

n∑

l=j+1

yijkl = 0
1 ≤ i < k ≤ n
1 ≤ j ≤ n,

(34)

−xkj − xkl +
k−1∑

i=1

yijkl +
n∑

i=k+1

ykjil = 0
1 ≤ k ≤ n
1 ≤ j ≤ n− 3,
1 ≤ j < l ≤ n− 1

(35)

Jünger and Kaibel [101] proved a conjecture of Padberg and Rijal concerning the dimension
of SQAPn. They also introduced a class of facet defining inequalities, so-called curtain
inequalities. The separation problem for these inequalities has been shown to be NP-hard.
By summarizing these results we get the following theorem

Theorem 5.2 (Jünger and Kaibel [101], 1996, Padberg and Rijal [142], 1996)

(i) The affine hull of the symmetric QAP polytope SQAPn is described by the linear
equations (32)-(35). These equations are linearly independent and the rank of the
system is n2(n− 2) + 2n− 1.

(ii) The dimension of SQAPn is equal to (n− 1)2 + n2(n− 3)2/4.

(iii) The inequalities yijkl ≥ 0 for i < k, j < l, and xij ≥ 0 for 1 ≤ i, j ≤ n, define facets
of QAPn.

(iv) For each i < k and for all J ⊆ {1, 2, . . . , n} the row curtain inequalities

−
∑

j∈J

xij +
∑

j,l∈J

j<l

yijkl ≤ 0

are valid for SQAPn. For each j < l and for all I ⊆ {1, 2, . . . , n} the column curtain
inequalities

−
∑

i∈I

xij +
∑

i,k∈I

i<k

yijkl ≤ 0
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are valid for SQAPn.
All curtain inequalities with 3 ≤ |I|, |J | ≤ n − 3 define facets of SQAPn. The other
curtain inequalities define faces which are contained in trivial facets of SQAPn.

Finally, there are some additional results concerning the affine description and the facial
structure of polytopes of special versions of sparse QAPs, e.g. sparse Koopmans-Beckmann
QAPs, see Kaibel [102]. The idea is to take advantage of the sparsity for a better analysis
and description of the related polytopes. These investigations, however, are still in their
infancy.

6 Lower Bounds

Lower bounding techniques are used within implicit enumeration algorithms, such as branch
and bound, to perform a limited search of the feasible region of a minimization problem,
until an optimal solution is found. A more limited use of lower bounding techniques concerns
the evaluation of the performance of heuristic algorithms by providing a relative measure
of proximity of the suboptimal solution to the optimum. In comparing lower bounding
techniques, the following criteria should be taken into consideration:

• Complexity of computing the lower bound.

• Tightness of the lower bound (i.e., “small” gap between the bound and the optimum
solution).

• Efficiency in computing lower bounds for subsets of the original feasible set.

Since there is no clear ranking of the performance of the lower bounds that will be dis-
cussed below, all of the above criteria should be kept in mind while reading the following
paragraphs. Considering the asymptotic behavior of the QAP (see Section 12) it should be
fair to assume that the tightness of the lower bound probably dominates all of the above
criteria. In other words, if there is a large number of feasible solutions close to the opti-
mum, then a lower bound which is not tight enough, will fail to eliminate a large number
of subproblems in the branching process.

6.1 Gilmore-Lawler Type Lower Bounds

Based on the formulation of the general QAP as an LAP of dimension n2 stated in formula-
tion (11), Gilmore [77] and Lawler [118] derived lower bounds for the QAP, by constructing
a solution matrix Y in the process of solving a series of LAPs. If the resulting matrix Y is a
permutation matrix, then the objective function value yielded by Y is optimal, otherwise it
is bounded from below by 〈C, Y 〉. In this section we briefly describe a number of bounding
procedures which exploit this basic idea.

The Gilmore-Lawler bound

Consider an instance of the Lawler QAP (2) with coefficients C = (cijkl), and partition the
array C into n2 matrices of dimension n×n, C(i,j) = (cijkl), for each fixed pair (i, j), i, j =
1, 2, . . . , n. Each matrix C(i,j) essentially contains the costs associated with the assignment
xij = 1. Partition the solution array Y = (yijkl) also into n2 matrices, Y (i,j) = (yijkl), for
fixed i, j = 1, 2, . . . , n.
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For each pair (i, j), 1 ≤ i, j ≤ n, solve the LAP with cost matrix C(i,j) and denote its
optimal value by lij :

lij = min

n∑

k=1

n∑

l=1

cijklyijkl (36)

s.t.

n∑

k=1

yijkl = 1, l = 1, 2, . . . , n,

n∑

l=1

yijkl = 1, k = 1, 2, . . . , n,

yijij = 1 (37)

yijkl ∈ {0, 1}, i, j = 1, 2, . . . , n. (38)

Observe that constraint (37) essentially reduces the problem into an LAP of dimension
(n− 1) with cost matrix obtained from C(i,j) by deleting its i-th row and j-th column. For
each i, j, denote by Y (i,j) the optimal solution matrix of the above LAP.

The Gilmore-Lawler lower bound GLB(C) for the Lawler QAP with coefficient array C
is given by the optimal value of the LAP of size n with cost matrix (lij)

GLB(C) = min

n∑

i=1

n∑

j=1

lijxij (39)

s.t. (xij) ∈ Xn .

Denote by X∗ = (x∗ij) the optimal solution matrix of this last LAP. If 1
n

∑
ij x

∗
ijY

(ij) ∈ Xn,

then the array Y ∗ = (y∗ijkl) with matrices Y (i,j)∗ = x∗ijY
(ij) for all i, j, 1 ≤ i, j ≤ n, is

a Kronecker product of two permutation matrices of dimension n, and hence an optimal
solution of the considered QAP. Since each LAP can be solved in O(n3) time, the above
lower bound for the Lawler QAP (2) of dimension n can be computed in O(n5) time.

For the more special Koopmans-Beckmann QAP (1), where the quadratic costs cijkl are
given as entry-wise products of two matrices F = (fij) and D = (dij), cijkl = fijdkl for all
i, j, k, l, the computational effort can be reduced to O(n3). This is due to the following well
known result of Hardy, Littlewood, and Pólya [92]:

Proposition 6.1 (Hardy, Littlewood and Pólya [92], 1952)
Given two n-dimensional real vectors a = (ai), b = (bi) such that 0 ≤ a1 ≤ a2 ≤ . . . ≤ an
and b1 ≥ b2 ≥ . . . ≥ bn ≥ 0, the following inequalities hold for any permutation φ of
1, 2, . . . , n:

n∑

i=1

aibi ≤
n∑

i=1

aibφ(i) ≤
n∑

i

aibn−i+1

Given two arbitrary nonnegative vectors a, b ∈ IRn, let φ be a permutation which sorts
a non-decreasingly and ψ a permutation which sorts a non-increasingly. Moreover, let π be
a permutation which sorts b non-increasingly. We denote

〈a, b〉− :=

n∑

i=1

aφ(i)bπ(i) 〈a, b〉+ :=

n∑

i=1

aψ(i)bπ(i) (40)
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Consider now an instance (1) of the Koopmans-Beckmann QAP. This can be written as a
Lawler QAP of the form (2) by setting

cijkl :=

{
fikdjl, for i 6= k, j 6= l

fiidjj + bij , for i = k, j = l.

Each matrix C(i,j) of the array C is then given by C(i,j) = (fikdjl). Therefore, instead of
solving n2 LAPs we can easily compute the values lij by applying Proposition 6.1, as

lij = fiidjj + bij + 〈f̂(i,.), d̂(j,.)〉− , (41)

where f̂(i,.), d̂(j,.) ∈ IRn−1 are (n−1)-dimensional vectors obtained from the i-th and the j-th
row of F and D by deleting the i-th and the j-th element, respectively. Finally, by solving
the LAP with cost matrix (lij) as in (39), we obtain the Gilmore-Lawler lower bound for
the Koopmans-Beckman QAP. The appropriate sorting of the rows and columns of F and
D can be done in O(n2 log n) time. Then the computation of all lij takes O(n3) time and
the same amount of time is needed to solve the last LAP.

Similar bounds have been proposed by Christofides and Gerrard [48]. The basic idea
relies again on decomposing the given QAP into a number of subproblems which can be
solved efficiently. First solve each subproblem, then build a matrix with the optimal val-
ues of the subproblems, and solve an LAP with that matrix as cost matrix to obtain a
lower bound for the given QAP. Christofides et al. decompose the Koopmans-Beckmann
QAP (F,D) based on isomorphic-subgraphs of graphs whose weighted adjacency matrices
are F and D. The GLB is obtained as a special case, if these subgraphs are stars, and it
generally outperforms the bounds obtained by employing other subgraphs, like single edges,
or double stars (see also [74]).

The Gilmore-Lawler bound is simple to compute, but it deteriorates fast as n increases.
The quality of this lower bound can be improved if the given problem is transformed such
that the contribution of the quadratic term in the objective function is decreased by moving
costs to the linear term. This is the aim of the so-called reduction methods.

Reduction methods

Consider a Lawler QAP as in (2), and assume that bij = 0 for all i, j. By the above
discussion the GLB will be given as solution of the following LAP

min

n∑

i=1

n∑

j=1

(lij + cijij)xij

s.t. (xij) ∈ Xn. (42)

We want to decompose the cost coefficients in the quadratic term of (2) and transfer some
of their value into the linear term such that cijij ≫ lij. This would yield a tighter lower
bound because the LAP can be solved exactly. This procedure is known as reduction and
was introduced by Conrad [54]. Reductions have been investigated by many researchers
(see [21, 162, 62, 70]). The general idea is to decompose each quadratic cost coefficient into
several terms so as to guarantee that some of them end up in being linear cost coefficients
and can be moved in the linear term of the objective function. Consider the following
general decomposition scheme:

D-1: cijkl = c̄ijkl + eijk + gijl + hikl + tjkl, i 6= k, j 6= l,
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where e, g, h, t ∈ IRn3
. Substituting the above in the objective function of (2) we obtain

a new QAP which is equivalent with the given one and whose objective function has a
quadratic and a linear part. (Formulas for the coefficients of this new QAP can be found
in the literature, e.g. [70].) For the quadratic term we can compute the Gilmore-Lawler
bound. Then we add it to the optimal value of the linear part in order to obtain a lower
bound for the QAP.

In the case of the Koopmans-Beckman QAP the general decomposition scheme is

D-2: fij = f̄ij + λi + µj , i 6= j,

dkl = d̄kl + νk + φl, k 6= l,

where λ, µ, ν, φ ∈ IRn.

Frieze and Yadegar [70] have shown that the inclusion of vectors h and t in D-1, or similarly
the inclusion of vectors µ and φ in D-2, does not affect the value of the lower bound.
Therefore these vectors are redundant.

As mentioned also in Section 4.3, Frieze and Yadegar derived lower bounds for the QAP
based on a Lagrangean relaxation of the mixed integer linear programming formulation
(17)-(24). By including the constraints (19) and (20) in the objective function (17) and
using vectors e and g as Lagrangean multipliers, we get the following Lagrangean problem

L(e, g) =

min
{∑

ijkl cijklyijkl +
∑

jkl ejkl (xkl −
∑

i yijkl) +
∑

ikl gikl

(
xkl −

∑
j yijkl

)}
=

∑
ijkl(cijkl − ejkl − gikl)yijkl +

∑
ij (

∑
k ekij +

∑
l glij) xij

s.t. constraints (18), (21),. . .,(24).

As proved in [70], for any choice of e and g, the solution to the above Lagrangean problem
equals the value of the GLB obtained after the decomposition of the coefficient cijkl by
using only vectors e and g in D-1. Therefore, maxe,g L(e, g) constitutes a lower bound
for the QAP which is larger (i.e., better) than all GLBs obtained after applying reduction
methods according to D-1 (D-2). Frieze and Yadegar propose two subgradient algorithms
to approximately solve maxe,g L(e, g), and obtain two lower bounds, denoted by FY 1 and
FY 2. These bounds seem to be sharper than the previously reported Gilmore-Lawler
bounds obtained after applying reductions.

Bounding techniques based on reformulations

Consider the Lawler QAP with a linear term in the objective function:

min
n∑

i,k=1

n∑
j,l=1

cijklxikxjl +
n∑

i,k=1

bikxik

s.t.
n∑
i=1

xik = 1, 1 ≤ k ≤ n,

n∑
k=1

xik = 1, 1 ≤ i ≤ n,

xik ∈ {0, 1}, 1 ≤ i, k ≤ n.
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As already mentioned in Section 1, we assume without loss of generality that the coefficients
cijkl, 1 ≤ i, j, k, l ≤ n are nonnegative.

A reformulation of this QAP is another QAP of the same form with new coefficients
c′ijkl, 1 ≤ i, j, k, l ≤ n, and b′ik, 1 ≤ i, k ≤ n, such that for all permutation matrices (xij)

n∑

i,k=1

n∑

j,l=1

cijklxikxjl +

n∑

i,k=1

bikxik =

n∑

i,k=1

n∑

j,l=1

c′ijklxikxjl +

n∑

i,k=1

b′ikxik,

holds. The basic idea is to derive a sequence of reformulations of the given problem by
applying some “appropriate” reformulation rule. When we compute the GLB for each re-
formulation in the sequence, the best among these bounds is a valid bound for the original
QAP. The reformulation rule is “appropriate” if the sequence of GLBs computed for the
reformulations is monotonically nondecreasing. Usually, the construction of a new refor-
mulation exploits the previous reformulations and the bounds obtained for them. Carraresi
and Malucelli in [40] have proposed the following scheme to derive the coefficients of the
reformulation

c′ijkl = cijkl + τijkl − αijl − βjkl + θik, 1 ≤ i, j, k, l ≤ n,

b′ik = bik +

n∑

j=1

αijk +

n∑

l=1

βikl − (n− 1)θik, 1 ≤ i, k ≤ n.

This type of bounding strategies has been proposed by Carraresi and Malucelli [39] and
Assad and Xu [8]. The parameters α, β, τ and θ are updated in each reformulation step.
Their values are determined by making use of the lower bound obtained for the last refor-
mulation and the optimal values and the dual variables of the linear assignment problems
solved during the last GLB computation. Clearly, not all choices of the parameters τ ,
α, β and θ in the above formulas produce a reformulation but there are settings of those
parameters which do so, as shown in [8, 39].
To illustrate the idea consider the reformulation formulas proposed by Carraresi and Malu-
celli in [40]:

τ
(t+1)
ijkl = c

(t)
ijkl − c

(t)
jilk, (43)

α
(t+1)
ijl = u

(t)
ijl, (44)

β
(t+1)
jkl = v

(t)
jkl, (45)

θ
(t+1)
ik =

1

n− 1

(
c
(t)
ik + u

(t)
i + v

(t)
k

)
, (46)

for all 1 ≤ i, j, k, l ≤ n. Here t is an index which counts the reformulations, u
(t)
ijl, 1 ≤ i ≤ n,

and v
(t)
jkl, 1 ≤ k ≤ n, are the optimal values of the dual variables of the LAP with cost matrix

(c
(t)
ijkl + b

(t)
jl ), for 1 ≤ j, l ≤ n. Let l

(t)
ik be the optimal values of these LAPs, 1 ≤ i, k ≤ n.

Then u
(t)
i , 1 ≤ i ≤ n, and v

(t)
k , 1 ≤ k ≤ n, are optimal values of the dual variables for

the LAP with costs matrix (l
(t)
ik + b

(t)
ik ) (i.e., the last LAP solved to compute the GLB of

the t-th reformulation). The bound produced with these settings is often denoted by CMB
in the literature. Clearly, the computation of CMB (as well as the computation of the
bounds obtained by applying the reformulation schemes proposed in [8, 39]) involves O(n5)
elementary operations per iteration.
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The reformulation schemes generally produce bounds of good quality. However, these
bounding techniques are quite time-consuming, as n2 + 1 linear assignment problems per
iteration have to be solved. Finally it has been shown in [39] that in the case that cijkl =
cjilk, for all 1 ≤ i, j, k, l ≤ n, the general reformulation scheme cannot produce lower bounds
which are better than the optimal value of the continuous relaxation of the mixed integer
programming formulation of Frieze and Yadegar.

Lower bounds for the QAP based on a dual formulation

More recently another bounding procedure which shares the basic idea of the GLB has been
proposed by Hahn and Grant [90, 91]. This procedure combines GLB ideas with reduction
steps in a general framework which works also for the Lawler QAP (2). The resulting bound
is denoted by HGB. Recall that we assume w.l.o.g. that all cijkl in (2) are nonnegative. As
described in 2.4 the four dimensional array C = (cijkl) is thought as being an n2×n2 matrix
composed of n2 submatrices C(i,j), 1 ≤ i, j ≤ n, where each C(i,j) is an n× n matrix given
by C(i,j) = (cijkl). This structure of C complies with the structure of the Kronecker product
X⊗X, whereX is an n×n permutation matrix. The entries cijij are called leaders. Clearly,
there is only one leader in each matrix C(i,j). The objective function value corresponding
to permutation φ consists of the sum of those entries cijkl which correspond to 1-entries
in the Kronecker product Xφ ⊗Xφ, where Xφ is the permutation matrix corresponding to
permutation φ. Hence, entries of the form cijil, j 6= l, or cijkj, i 6= k, do not contribute
to the value of the objective function. Such entries are called disallowed entries. Entries
which are not disallowed are said to be allowed .

The bounding procedure uses the following classes of operations acting on the matrix
(cijkl):

(R1) Add a constant to all allowed entries of some row (column) of some submatrix C(ij)

and either subtract the same constant from the allowed entries of another row (col-
umn) of the same submatrix, or subtract it from the leader in that submatrix.

(R2) Add a constant to all allowed entries of some row (column) of the n2 × n2 matrix
(cijkl).

Clearly, operations of class R1 do not change the objective function; They just redistribute
the entries of the submatrices C(ik). Operations of class R2 add a constant to the ob-
jective function, and hence they maintain the order of permutations with respect to the
corresponding values of the objective function. The main idea is then to transform C by
applying operations of the classes R1 and R2 so as to decrease the objective function by
some amount, say R, and to preserve the nonnegativity of entries of the transformed array
C ′. Then, clearly, R is a lower bound for the optimal solution of the given QAP. If, more-
over, the 0-entries in the transformed matrix C ′ comply with the pattern of zeros in the
Kronecker product Xφ ⊗Xφ for some permutation matrix Xφ, then R is the optimal value
of the original QAP and permutation φ is an optimal solution.

The procedure developed to find such a lower boundR, or possibly, to optimally solve the
problem, is essentially similar to the Hungarian method for the linear assignment problem.
It uses operations of classes R1 and R2 to redistribute the entries of C so as to obtain
a pattern of zeros which complies with the pattern of zeros of the Kronecker product
X ⊗X for some permutation matrix X. The whole process is a repeated computation of
Gilmore-Lawler bounds on iteratively transformed problem data, where the transformations
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generalize the ideas of reduction methods. The time complexity of each iteration is basically
that of the GLB computation for a Lawler QAP (i.e. O(n5)).

A deeper investigation of this bounding procedure reveals that it is an iterative approach
in which the dual of some LP relaxation of the original problem is solved and reformulated
iteratively (see Karisch, Çela, Clausen and Espersen [104]). The reformulation step makes
use of the information furnished by the preceding solution step. Some more details of this
interpretation are given in Section 6.2.

As reported in [90] this bounding procedure has been tested on small and middle sized
QAP instances from QAPLIB [34]. The computational results show an improved trade-
off between quality of bounds and computation time, when compared to other bounding
techniques. Other computational results of Hahn et al. [91] show that it is promising to
involve the HGB in branch and bound approaches.

6.2 Bounds Based on Linear Programming Relaxations

As we saw in Section 4 several mixed integer linear programming (MILP) formulations have
been proposed for the QAP. Clearly, the optimal solution of the continuous relaxation of
an MILP formulation is a lower bound for the optimal value of the corresponding QAP.
Moreover, each feasible solution of the dual of this relaxation is also a lower bound. The
identification of appropriate continuous relaxations of MILP formulations, and the devel-
opment of solution methods to solve these relaxations or their duals, have been important
aspects of research on the QAP.

In the context of lower bound computation two MILP formulations of the QAP play a
special role: The formulation of Frieze and Yadegar [70] described in Section 4.3 and that
of Adams and Johnson [3] described in Section 4.4.

As we have already mentioned Frieze and Yadegar consider a Lagrangean relaxation of
their MILP formulation and develop two subgradient optimization based algorithms to
approximately solve the latter. The resulting bounds denoted by FY1 and FY2, respectively,
perform better than the Gilmore-Lawer bound.

Adams and Johnson build upon the MILP formulation of Frieze and Yadegar and propose
a slightly different MILP formulation. As shown in [3] the continuous relaxation of this
formulation is tighter than the continuous relaxation of the formulation of Frieze et al. in
the sense that the optimal value of the former may be strictly larger than that of the latter.
Moreover, the constraints of the continuous relaxation of the formulations of Frieze et al.
can be obtained as a linear combination of the constraints of the continuous relaxation of
the formulation of Adams and Johnson.

Adams et al. consider a Lagrangean relaxation of (25) obtained by adding the so-called
complementary constraints (26) to the objective function with Lagrangean multipliers αijkl.
This Lagrangean relaxation denoted by AJ(α) is given below

min
n∑
i=1

n∑
j=1
j>i

n∑
k=1

n∑
l=1
l 6=k

(cijkl − αikjl)yikjl−

n∑
i=1

n∑
j=1
j<i

n∑
k=1

n∑
l=1
l 6=k

(cijkl − αjlik)yikjl +
n∑
i=1

n∑
k=1

aikbikxik

s.t.
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(AJ(α))

n∑
i=1

xik = 1, 1 ≤ k ≤ n,

n∑
k=1

xik = 1, 1 ≤ i ≤ n,

n∑
j=1

yijkl = xik, 1 ≤ i, k, l ≤ n,

n∑
l=1

yijkl = xik, 1 ≤ i, j, k ≤ n,

xik ∈ {0, 1}, 1 ≤ i, k ≤ n,

0 ≤ yijkl ≤ 1, 1 ≤ i, j, k, l ≤ n.

Let θ(α) denote the the optimal value of AJ(α). Then maxα θ(α) equals the optimal value of
the continuous relaxation of (25). Adams and Johnson [3] show that for each fixed set of the
multipliers α the problem AJ(α) can be solved efficiently by solving n2+1 LAPs, where n is
the size of the considered QAP. Moreover they develop an iterative dual ascent procedure to
approximately solve the above maximization problem. In each iteration problem AJ(α) is
solved to optimality and the optimal value θ(α) is computed. Clearly, θ(α) is a lower bound
for the considered QAP. Then the multipliers αijkl are updated by using the information
contained in the dual variables of the LAPs solved during the previous iteration. The
algorithm stops after having performed a prespecified number of iterations, and then clearly,
the solution it outputs gives a lower for the original QAP. These bounds are denoted by AJB.
Adams and Johnson propose two updating rules for the multipliers, one of them leading
to a non-decreasing sequence of lower bounds θ(α). In both cases the time complexity of
this bounding procedure is dominated by the solution of n2 + 1 LAPs in each iteration and
amounts to O(n5) per iteration.

The strength of AJB relies on the fact that it generalizes and unifies all Gilmore-Lawler-
like bounds (see Section 6.1) but the HGB. Adams et al. have shown that θ(0) equals the
Gilmore-Lawler bound whereas GLBs obtained after applying reductions as well as the
bounds of Carraresi and Malucelli [39] and Assad and Xu [8] equal θ(α) for special settings
of the Lagrangean multipliers αijkl. ¿From a practical point of view numerical experiments
with instances from QAPLIB show that AJB generally outperforms the above mentioned
bounds. However, according to the numerical results reported in [3, 90], HGB outperforms
AJB in terms of quality, while having higher computation time requirements.

The theoretical relationship between AJB and HGB has been investigated recently by
Karisch, Çela, Clausen and Espersen [104]. It turns out that unlike other Gilmore-Lawler-
like bounds, HGB cannot be obtained by applying the algorithm of Adams and Johnson to
solve the Lagrangean relaxation. However, both AJB and HGB can be obtained as feasible
solutions of the dual of the continuous relaxation of the MILP formulation (25) proposed
by Adams and Johnson. Karisch et al. propose an iterative algorithm to approximately
solve this dual, and show that AJB, HGB, and all other Gilmore-Lawler-like bounds can
be obtained by applying this algorithm with specific settings for the control parameters.
Moreover, the same authors identify a setting of parameters which seems to produce a bound
which is competitive with HGB in terms of quality and provides a better time/quality trade-
off. This bound denoted by KCCEB seems to be especially suitable for use within branch
and bound algorithms (see [104] for more details).

Concerning the solution to optimality of the continuous relaxation of (25), Adams and
Johnson point out that the resulting linear program (LP) is highly degenerated, and de-
generacy poses a problem for primal approaches. An effort to solve this LP relaxation has
been done by Resende, Ramakrishnan and Drezner [158]. These authors use an interior
point approach to solve the LP relaxation for QAP instances of size smaller than or equal
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to 30 taken from QAPLIB [34]. For larger instances the memory requirements become pro-
hibitive. The bounds of Resende et al., frequently denoted by IPLP, turn out to be the best
existing bounds for a large number of test instances from QAPLIB. However, the compu-
tation of the IPLP bounds requires very high computation times (see [158]) and therefore,
the IPLP bounds cannot be used within branch and bound algorithms, despite their good
quality.

The HGB bound of Hahn et al. [90] and the KCCEB bound of Karisch et al. [104] seem to
be the only linearization bounds comparable with IPLP, in terms of tightness. Moreover,
generally, HGB can be computed much faster than IPLP, whereas KCCEB seems to be
computable at least one order of magnitude faster than IPLP (see [104]).

6.3 Variance Reduction Lower Bounds

The variance reduction lower bounds were introduced by Li, Pardalos, Ramakrishnan and
Resende in [123]. Consider an instance of the Koopmans-Beckmann QAP of size n, with
flow and distance matrices F = (fij) and D = (dij). Partition both matrices as F = F1+F2

and D = D1 +D2, where F1 = (f
(1)
ij ), F2 = (f

(2)
ij ) and D1 = (d

(1)
ij ), D2 = (d

(2)
ij ), and define

a new n× n matrix L = (lij), by solving the following n2 LAPs

lij := min
φ∈Sn

φ(i)=j

n∑

k=1

(
f

(1)
ik d

(1)
jφ(k) + f

(2)
ki dφ(k)j + fkid

(2)
φ(k)j − f

(2)
ki d

(2)
φ(k)j

)
. (47)

It has been shown in [123] that the solution of the LAP with cost matrix L constitutes a
lower bound for the considered QAP. The problem of concern now is to choose F1, F2 and
D1,D2 such that the resulting lower bound is maximized. Notice that by setting F1 = F
and D1 = D we obtain the GLB.

Given an m×n matrix M , denote its rows and columns m(i.), and m(.j), i, j = 1, . . . , n,
respectively. Think of M as a data set of mn elements mij, and define an average γ(M)
and a variance V (M) as

γ(M) :=
1

mn

m∑

i=1

n∑

j=1

mij , V (M) :=
m∑

i=1

n∑

j=1

(γ(M) −mij)
2.

Also define the total variance

T (M,λ) := λ

m∑

i=1

V (m(i.)) + (1 − λ)V (M), λ ∈ [0, 1].

The term V (m(i.)) stands for the variance of m(i.), treated as an 1 × n matrix. Li et
al. observed that as the variances of the matrices F and D decrease, the GLB increases.
Moreover, GLB becomes maximum if the variances of the rows of the matrices equal zero.
The partition scheme considered is of the form F1 = F + ∆F , F2 = −∆F , and D1 =
D + ∆D,D2 = −∆D. We will only describe how ∆F is obtained; ∆D is then obtained in
an analogous way. Thus, the problem is to find a matrix ∆F , such that the variances of F1

and F2 and the sum of the variances of the rows for each F1 and F2 are minimized. This
problem can be stated mathematically as

min θT (F + ∆F , λ) + (1 − θ)T (−∆T
F , λ), (48)
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where ∆F = (δij) is an n × n matrix and θ ∈ [0, 1] is a parameter. Two approximate
solutions

R-1: δij = θ(fnn − fij) + δnn, i, j = 1, . . . , n,
R-2: δij = θ(γ(f(.n)) − γ(f(.j)) i, j = 1, . . . , n ,

where δnn is arbitrary, were proposed in [123], The matrix ∆D is constructed in the same
way. After the partitioning of the matrices F and D according to R-1 or R-2, the solution
to the LAP with cost matrix L = (lij) (where lij are defined in (47)) yields the bounds
LB1(θ) or LB2(θ), respectively.
Notice that R-2 is obtained under the assumption that the columns of the matrix ∆F

(∆D) are constant. This fact can be used to speed the computation of LB2(θ) by applying
Proposition 6.1.
In the case of computing LB1(θ), the direct approach would be to solve n2 LAPs defined
in (47), and this would require O(n5) elementary operations. A different approach is to
calculate lower bounds l̂ij for the values lij , i, j = 1, . . . , n, and to solve than the LAP with

cost matrix (l̂ij)

l̂ij := 〈f̂ (1)
(i,.), d̂

(1)
(j,.)〉

− + 〈f̂ (2)
(.,i), d̂(.,j)〉− + 〈f̂(.,i), d̂

(2)
(.,j)〉

− + 〈f̂ (2)
(.,i), d̂

(2)
(.,j)〉

+ .

It takes O(n3) time to compute all l̂ij and the same time to solve the final LAP. Thus,
the variance reduction lower bound can be computed in O(n3) time. These lower bounds
perform well on QAPs with input matrices that have high variances, but their performance
reduces to that of the GLB when the variance of the matrices is small.

It is worth noting that there is also a closed form solution to problem (48) given by
Jansen [96]. However, as reported in [123], using that closed form to compute the lower
bounds, poses implementation obstacles.

6.4 Eigenvalue Based Lower Bounds

These bounds were introduced by Finke, Burkard, and Rendl [67], and can be applied to
the Koopmans-Beckmann QAP in (1). They are based on the relationship between the
objective function value of the QAP in the trace formulation (9) and the eigenvalues of its
coefficient matrices. When designed and implemented carefully, these techniques produce
bounds of good quality in comparison with Gilmore-Lawler-like bounds or, more generally,
with bounds based on linear relaxations. However, these bounds are quite expensive in
terms of computation time requirements and therefore are not appropriate for use within
branch and bound algorithms. Moreover, these bounds deteriorate quickly when lower levels
of the branch and bound tree are searched, as shown by Karisch, Clausen, Perregaard, and
Rendl [49].

Upon the introduction of the method in [67], many improvements and generalizations
have appeared [86, 87, 88, 89, 154, 155]. There is a resemblance with the Gilmore-Lawler
based lower bounds in the sense that, based upon a general eigenvalue bound, reduction
techniques are applied to the quadratic terms of the objective function in order to improve
its quality. In this case the reduction techniques yield a significant improvement, which is
not really the case with the GLB.

Bound EV

Consider the trace formulation of the QAP in (9), with F and D being real symmetric
matrices (see Section 2.3), and hence having only real eigenvalues. The following theorem
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describes the relations between the eigenvalues of matrices F and D and the objective
function of QAP (F,D) :

Theorem 6.1 (Finke, Burkard, and Rendl [67], 1987)
Let D, F be symmetric n× n matrices with real entries. Denote by λ = (λ1, . . . , λn)

T and
x1, . . . , xn the eigenvalues and eigenvectors of F , and by µ = (µ1, . . . , µn)

T and y1, . . . , yn
the eigenvalues and eigenvectors of D, respectively. Then the following two relations are
true for all X ∈ Xn,

(i) tr(FXDXT ) =
n∑
i=1

n∑
j=1

λiµj〈xi,Xyj〉2 = λTS(X)µ

where S(X) = (〈xi,Xyj〉2) is a doubly stochastic matrix,

(ii) 〈λ, µ〉− ≤ tr(FXDXT ) ≤ 〈λ, µ〉+.

By using part (ii) of Theorem 6.1 we obtain a lower bound (EVB) for the considered QAP

EVB := 〈λ, µ〉− + min
X∈Xn

tr(BXT ).

The second term is the optimal value of an LAP and can be computed efficiently.
EVB is not a strong bound. It often takes a negative value for QAP instances with non-
negative coefficients. According to Theorem 6.1 the smaller the interval [〈λ, µ〉−, 〈λ, µ〉+]
is, the closer is 〈λ, µ〉− to tr(FXDXT ). Thus, trying to equivalently transform the given
QAP so as to decrease the length of that interval is one possibility to improve EVB.

Reduction methods and bound EV1

One possibility to make the interval [〈λ, µ〉−, 〈λ, µ〉+] smaller, and hence to improve EVB, is
to decompose the matrices F and D such that some amount will be transferred to the linear
term, and the eigenvalues of the matrices resulting in the quadratic term are as uniform in
value as possible. Define the spread of the matrix F as

spread(F ) := max { | λi − λj | : i, j = 1, . . . , n} .

Our goal is to minimize the spreads of the matrices that compose the quadratic term. There
is no simple closed form for expressing spread(F ) in terms of fij, however there is a closed
formula for an upper bound m(F ) due to Mirsky [136]

spread(F ) ≤ m(F ) =


2

n∑

i=1

n∑

j=1

f2
ij −

2

n
(trF )2




1/2

. (49)

Finke, Burkard, and Rendl [67] have proposed the following decomposition scheme

fij = f̄ij + ei + ej + rij , (50)

dkl = d̄kl + gk + gl + skl, (51)

where rij = sij = 0, for i 6= j. Denote F̄ = (f̄ij) and D̄ = (d̄ij). The values of ei and
rii (gj and sjj) which minimize the function f(e, r) = m(F̄ ) (h(g, r) = m(D̄)) obtained by
substituting the values of f̄ij (d̄ij) in (49) are given by closed formula, see [67].
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By replacing F and D in (9) we obtain

tr(FXD +B)XT = tr(F̄XD̄ + B̄)XT ,

where b̄ij = bij + fiidjj + 2ei
∑n

k=1
k 6=j

djk. Let λ̄ = (λ̄1, . . . , λ̄n) and µ̄ = (µ̄1, . . . , µ̄n) be

the eigenvalues of matrices F̄ and D̄, respectively. By applying EVB to the QAP with
transformed coefficient matrices we obtain a new eigenvalue bound EVB1

EVB1 := 〈λ̄, µ̄〉− + min
X∈Xn

trB̄XT .

Bound EV2

If we restrict ourselves only to purely quadratic, symmetric QAPs (fii = dii = 0, for
all i, B = 0), the matrix B̄ in the above decomposition becomes B̄ = cwT , where c =
2(e1, . . . , en)

T and w = (
∑

j d1j , . . . ,
∑

j dnj)
T . Therefore minX∈Xn tr(B̄X

T ) = 〈c, w〉−,
and

EVB1 = 〈λ̄, µ̄〉− + 〈c, w〉− ≤ min
X∈Xn

tr(F̄XD̄ + B̄)XT .

One can, however, obtain a further improvement as suggested by Rendl [154] as follows.
Let Sk := {X1, . . . ,Xk} ⊆ Xn, and

L(Xi) := min {〈c,Xiw〉 : Xi ∈ Xn \ Si−1} .

Thus, for any integer k ≥ 1 we have L(X1) ≤ L(X2) ≤ · · · ≤ L(Xk). In other words the set
Sk contains the k best solutions (permutation matrices) of the problem minX∈Xn〈c,Xiw〉.

Z(F̄ , D̄,Xi) is the value of the objective function of QAP (F̄ , D̄) yielded by solution Xi,
i.e.,

Z(F̄ , D̄,Xi) = tr(F̄XiD̄ + B̄)XT
i .

Further define Z(k) := min
{
Z(F̄ , D̄,Xi) : i = 1, . . . , k

}
. Then the following inequalities

hold (see [154])

Z(1) ≥ · · · ≥ Z(k) ≥ 〈λ̄, µ̄〉− + L(Xk) ≥ · · · ≥ 〈λ̄, µ̄〉− + L(X1) ,

where the equality Z(i) = 〈λ̄, µ̄〉− +L(Xi) for some i implies that Xi is an optimal solution
of QAP (F̄ , D̄). Thus, essentially, we try to reduce the gap between the optimal value of
the QAP and the lower bound EVB1, by increasing the value of the linear term 〈c, w〉− in
the bound in k steps, where k is specified as a parameter. The generation of the set Sk
is a special case of the problem of finding the k best solutions of an assignment problem.
Murty [139] has given an O(kn3) algorithm to solve this problem. Rendl [154] presents
an O(nlogn + (n + logk)k) algorithm for the special case where the cost matrix of the
assignment problem is given as a product matrix (ciwj).

Rendl [154] addresses two issues regarding the effectiveness of the above ranking procedure
in improving the lower bound. First, if the vectors c and w have m ≤ n equal elements,
then there are at least m! permutation matrices {Xi} such that the values 〈c,Xiw〉 are
equal. This implies in turn that there will be none or small improvement in the lower
bound while generating Sk for quite some number of iterations. It can be shown that c and
w will have equal elements if the row sums of F and D are equal (see [67]). Hence, the
ranking procedure could give good results in the case that most of the row sums of F and
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D are not equal. Secondly, Rendl defines a ratio Λ called the degree of linearity based on
the ranges of the quadratic and linear terms that compose the lower bound

Λ :=
〈λ̄, µ̄〉+ − 〈λ̄, µ̄〉−
〈c, w〉+ − 〈c, w〉− .

The influence of the linear term on the lower bound is inversely proportional to the value
of Λ. A small value of Λ suggests that the ranking procedure would be beneficial for the
improvement of EVB1 for symmetric, pure quadratic QAPs. For large values of Λ, we can
expect that the quadratic term dominates the linear term in the objective function. In
this case Finke et al. [67] suggest the following improvement of EVB1. Consider part (i)
of Theorem 6.1 applied to the reduced matrices F̄ and D̄, and denote the elements of the
matrix S(X) by sij, sij = 〈xi,Xyj〉2. It is easy to see that lij ≤ sij ≤ uij , where

uij = max{(〈xi, yj〉−)2, (〈xi, yj〉+)2},

lij =

{
0, if 〈xi, yj〉− · 〈xi, yj〉+ < 0,

min{(〈xi, yj〉−)2, (〈xi, yj〉+)2}, otherwise.

Recalling the fact that the sij are the elements of a doubly stochastic matrix, we can
then form the capacitated transportation problem

CTP ∗ = min

n∑

i=1

n∑

j=1

λ̄iµ̄jsij

s.t.
n∑

i=1

sij = 1, j = 1, . . . , n,

n∑

j=1

sij = 1, i = 1, . . . , n,

lij ≤ sij ≤ uij.

Then, a new lower bound would be

EV B2 = CTP ∗ + 〈c, w〉−.

Other eigenvalue related bounds

Rendl and Wolkowicz [155] derive a new lower bound similar to EVB2. Notice that the
decomposition scheme in (50) and (51) is uniquely determined by the 4n-dimensional vector
d := (eT , gT , rT , sT ) ∈ IR4n, where r = (r11, . . . , rnn)

T and s = (s11, . . . , snn)
T . EVB1 is

then a function of d. Maximizing this function with respect to d will result in a lower bound
with the best possible decomposition with respect to both the linear and the quadratic
term. Maximizing EVB1 as a function of d leads to a nonlinear, nonsmooth, nonconcave
maximization problem which is hard to solve to optimality. Rendl et al. propose a steepest
ascent algorithm to approximately solve this problem (see [155]). The new bound, denoted
EVB3, produces the best lower bounds for a number of QAP instances from QAPLIB, with
the expense, however, of high computational time requirements.
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A more general approach to eigenvalue based lower bounding techniques, was employed
by Hadley, Rendl and Wolkowicz [87]. Consider the following sets of n×n matrices, where
I is the n× n identity matrix and u := (1, . . . , 1)T is the n-dimensional vector of all ones:

O := {X : XTX = I}, set of orthogonal matrices,

E := {X : Xu = XTu = u}, set of matrices with row

and column sums equal to one,

N := {X : X ≥ 0}, set of nonnegative matrices.

(52)

It is a well known result that Xn = O∩E ∩N , while the set Ω of doubly stochastic matrices
is given as Ω = E ∩ N . Moreover, by Birkhoff’s theorem [17] we know that Ω is a convex
polyhedron with vertex set Xn, i.e., Ω = conv{X : X ∈ Xn}. The above characterization
of Xn implies that we get a relaxation of the QAP, if we delete one or two of the matrix sets
O, E and N in the intersection Xn = O ∩ E ∩ N . Obviously, the relaxation, and therefore
the lower bound, will be tighter if only one of the matrix sets is excluded. In relation to
Theorem 6.1, Rendl and Wolkowicz [155] have shown that

min
X∈O

tr(FXDXT ) = tr(FΛFΛTDDΛDΛTF ) = 〈λ, µ〉−,

max
X∈O

tr(FXDXT ) = tr(FΛFΛTDDΛDΛTF ) = 〈λ, µ〉+,

where ΛF ,ΛD are matrices whose columns consist of the eigenvectors of F and D, respec-
tively, in the order specified by their minimal (maximal) inner product. In other words, the
lower bound on the quadratic part of the QAP as obtained in EVB, is derived by relaxing
the feasible set to the set of orthogonal matrices.

All eigenvalue bounds discussed above relax the set of permutation matrices to O. A
tighter relaxation was proposed in [86, 88], where the set of permutation matrices was
relaxed to O ∩ E . The authors incorporate E in the objective function by exploiting the
fact that the vector of ones u is both a left and right eigenvector with eigenvalue 1, for any
X ∈ Xn. More specifically, define

P := [u/‖u‖ ... V ], where V Tu = 0, V TV = In−1.

Then, V is an orthonormal basis for {u}⊥, while Q := V V T is the orthogonal projection
on {u}⊥. The following characterization of the permutation matrices is given in [88].

Lemma 6.1 (Hadley [86], 1989, Hadley, Rendl, Wolkowicz [88], 1992)
Let X be a real n× n matrix and Y be a real (n− 1) × (n− 1) matrix. If

X = P

[
1 0
0 Y

]
P T , (53)

then

X ∈ E , X ∈ N ⇔ V Y V T ≥ −uuT /‖u‖2 , and X ∈ O ⇔ Y ∈ On−1 .

Conversely, if X ∈ E, there exists a Y such that (53) holds.

Note that the above characterization of permutation matrices preserves the orthogonality
and the trace structure of the problem. By substituting X = −uuT /‖u‖2 + V Y V T in the
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trace formulation of the QAP (9) as suggested by (53), we obtain an equivalent projected
problem (PQAP) of dimension n− 1 with variable matrix Y . The new lower bound, often
called elimination bound and denoted by ELI, is obtained by dropping the requirement
V Y V T ≥ −uut/‖u‖2 and simply requiring Y ∈ On−1. In this way we derive a lower bound
for the quadratic part of the PQAP. The linear part can be solved exactly as an LAP.

Concluding this section notice that there is a possibility to apply eigenvalue bounds
to non-symmetric QAPs, i.e., QAPs with both coefficient matrices being non-symmetric.
Hadley [86] and Rendl and Wolkowicz [89] show that analogous eigenvalue bounds to those
for QAPs with at least one symmetric coefficient matrix can be derived for QAPs with
Hermitian coefficient matrices. Moreover, these authors show that each QAP can be equiv-
alently transformed into a QAP with Hermitian coefficient matrices.

6.5 Bounds Based on Semidefinite Relaxations

Semidefinite programming (SDP) is a generalization of linear programming where the vari-
ables are taken from the Euclidean space of matrices with the trace operator acting as an
inner product. The non-negativity constraints are replaced by semidefiniteness constraints
and the linear constraints are formulated in terms of linear operators on the above men-
tioned Euclidean space of matrices. Successful applications of semidefinite programming
in discrete optimization are presented in Goemans and Williamson [82], and Lovász and
Schrijver [125].
Recently, semidefinite programming relaxations for the QAP were considered by Karisch [103],
Zhao [176], and Zhao, Karisch, Rendl and Wolkowicz [177]. The SDP relaxations consid-
ered in these papers are solved by interior point methods or cutting plane methods, and
the obtained solutions are valid lower bounds for the QAP.

In terms of quality the bounds obtained in this way are competitive with the best existing
lower bounds for the QAP. For many test instances from QAPLIB, such as some instances of
Hadley, Roucairol, Nugent et al. and Taillard, they are the best existing bounds. However,
due to prohibitively high computation time requirements, the use of such approaches as
basic bounding procedures within branch and bound algorithms is up to now not feasible.
We refer to [103, 177] for a detailed description of SDP approaches to the QAP and illustrate
the idea by describing just one semidefinite programming relaxation for the QAP.

The set of n × n permutation matrices Xn is the intersection of the set of n × n 0-1
matrices, denoted by Zn, and the set En of n×n matrices with row and column sums equal
to 1. Moreover, Xn is also the intersection of Zn with the set of n×n orthogonal matrices,
denoted by On. Hence

Xn = Zn ∩ En = Zn ∩On.

Recall that
On =

{
X ∈ IRn×n : XXT = XTX = I

}
and

En =
{
X ∈ IRn×n : Xu = XTu = u

}
,

where I is the n × n identity matrix and u is the n-dimensional vector of all ones. Then,
the trace formulation of the QAP (2.3) with the additional linear term

−2

n∑

i=1

n∑

j=1

bijxij ,

can be represented equivalently as follows:
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(QAPE )

min tr(FXDXT − 2BXT )
s.t.

XXT = XTX = I,
Xu = XTu = u,
x2
ij − xij = 0.

In order to obtain a semidefinite relaxation for the QAP from the formulation QAPE

above, we introduce first an n2-dimensional vector vec(X). vec(X) is obtained as a column-
wise ordering of the entries of matrix X. Then the vector vec(X) is lifted into the space of
(n2 + 1) × (n2 + 1) matrices by introducing a matrix YX ,

YX =

(
x0 vec(X)T

vec(X) vec(X)vec(X)T

)
.

Thus, YX has some entry x0 in the left-upper corner followed by the vector vec(X) in its
first row (column). The remaining terms are those of the matrix

vec(X)vec(X)T

sitting on the right lower n2 × n2 block of YX .
Secondly, the coefficients of the problem are collected in an (n2 + 1) × (n2 + 1) matrix K
given as

K =

(
0 −vec(B)T

vec(B) D ⊗ F

)
,

where the operator vec is defined as above and D ⊗ F is the Kronecker product of D and
F .
It is easy to see that with these notations the objective function of QAPE equals tr(KYX).
By setting y00 := x0 = 1 as done in Zhao et al. [177], one obtains two additional constraints
to be fulfilled by the matrix YX : YX is positive semidefinite and matrix YX is a rank-one
matrix. Whereas the semidefiniteness and the equality y00 = 1 can be immediately included
in an SDP relaxation, the rank-one condition is hard to handle and is discarded in an SDP
relaxation. In order to assure that the rank-one positive semidefinite matrix YX is obtained
by an n×n permutation matrix as described above, other constraints should be imposed to
YX . Such conditions can be formulated as valid constraints of an SDP formulation for the
QAP by means of some new operators, acting on matrices or vectors as introduced below.
diag(A) produces a vector containing the diagonal entries of matrix A in their natural
order, i.e., from top-left to bottom-right. The adjoint operator Diag acts on a vector
V and produces a square matrix Diag(V ) with off-diagonal entries equal to 0 and the
components of V on the main diagonal. Clearly, for an n dimensional vector V , Diag(V )
is an n× n matrix.
arrow acts on an (n2 + 1) × (n2 + 1) matrix Y and produces an n2 + 1 dimensional vector
arrow(Y ) = diag(Y ) − (0, Y0,1:n2), where (0, Y(0,1:n2)) is an n2 + 1 dimensional vector with
first entry equal to 0 and other entries coinciding with the entries of Y lying on the 0-th row
and in columns between 1 and n2, in their natural order1. The adjoint operator Arrow acts
on an n2 + 1 dimensional vector W and produces an (n2 + 1)× (n2 + 1) matrix Arrow(W )

Arrow(W ) =

(
w0 1/2W T

1:n2

1/2W(1:n2) Diag(W1:n2)

)
,

1Note here that the rows and columns of an (n2 + 1) × (n2 + 1) matrix are indexed by 0, 1, . . . , n
2.
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where W(1:n2) is the n2 dimensional vector obtained from W by removing its first entry w0.
Further, we are going to consider an (n2 + 1) × (n2 + 1) matrix Y as composed of its first
row Y(0,.), of its first column Y(.,0), and of n2 submatrices of size n × n each, which are
arranged in an n×n array of n×n matrices and produce its remaining n2×n2 block. (This
is similar to the structure of a Kronecker product of two n×n matrices, see Section 2.4 and
6.1.) The entry yαβ, 1 ≤ α, β ≤ n2, will be also denoted by y(ij)(kl), with 1 ≤ i, j, k, l ≤ n,
where α = (i−1)n+ j and β = (k−1)n+ l. Hence, y(ij)(kl) is the element with coordinates
(j, l) within the n× n block with coordinates (i, k).
With these formal conventions let us define the so-called block-0-diagonal and off-0-diagonal
operators, acting on an (n2 + 1) × (n2 + 1) matrix Y , and denoted by b0diag and o0diag,
respectively. b0diag(Y ) and o0diag(Y ) are n× n matrices given as follows:

b0diag(Y ) =

n∑

k=1

Y(k,.)(k,.), o0diag(Y ) =

n∑

k=1

Y(.,k),(.,k) ,

where, for 1 ≤ k ≤ n, Y(k,.)(k,.) is the k-th n×n matrix on the diagonal of the n×n array of
matrices, defined as described above. Analogously, Y(.,k),(.,k) is an n × n matrix consisting
of the diagonal elements sitting on the position (k, k) of the n × n matrices (n2 matrices
altogether) which form the n2×n2 lower right block of matrix Y . The corresponding adjoint
operators B0Diag and O0Diag act on an n× n matrix S and produce (n2 + 1) × (n2 + 1)
matrices as follows:

B0Diag =

(
0 0
0 I ⊗ S

)
, O0Diag =

(
0 0
0 S ⊗ I

)
.

Finally, let us denote by e0 the n2 + 1 dimensional unit vector with first component equal
to 1 and all other components equal to 0, and let R be the (n2 + 1)× (n2 + 1) matrix given
by

R =

(
n −uT ⊗ uT

−− u⊗ u I ⊗ E

)
+

(
n −uT ⊗ uT

−− u⊗ u E ⊗ I

)
,

where E is the n× n matrix of all ones.
With these notations, a semidefinite relaxation for QAPE is given as follows

(QAPR0)

min tr(KY )
s.t.

b0diag(Y ) = I,
o0diag(Y ) = I,
arrow(Y ) = e0,
tr(RY ) = 0,
Y � 0.

where � is the so-called Löwner partial order , i.e., A � B if and only if B −A � 0, that is
B −A is positive semidefinite.

Zhao et al. [177] have shown that an equivalent formulation for the considered QAP is
obtained from QAPR0 by imposing one additional condition on the matrix Y , namely, the
rank-one condition.

6.6 Improving Bounds by Means of Decompositions

The idea of applying so-called decompositions to improve lower bounds for specially struc-
tured QAPs was initially proposed by Chakrapani and Skorin-Kapov [44], and then further
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elaborated by Karisch and Rendl [105]. The applicability of this approach seems to be
restricted to QAPs with a very special structure, the so-called grid QAPs (or rectilinear
QAPs) to be introduced below. This procedure yields the best existing bounds for many
grid QAP instances from QAPLIB and a good trade off between computation time and
bound quality.

A grid QAP is a Koopmans-Beckmann QAP with flow matrix F and distance matrix
D = (dij) being the distance matrix of a uniform rectangular grid. If dij = dik + dkj , we
say that k is on the shortest path connecting i and j. The triple u = (i, j, k) is then called
a shortest path triple. The shortest path triple v = (i, j, k) for which dik = dkj = 1 is called
a shortest triangle.

We associate a matrix Ru = (r
(u)
ij ) to each shortest path triple u = (k,m, l), and a

matrix Tv = (t
(v)
ij ) to each shortest triangle v = (k′,m′, l′), where Ru and Tv are defined by

r
(u)
kl = r

(u)
lk = r

(u)
ml = r

(u)
lm = 1, r

(u)
km = r

(u)
mk = −1,

t
(v)
k′m′ = t

(v)
l′m′ = t

(v)
m′l′ = t

(v)
l′k′ = t

(v)
k′m′ = t

(v)
m′k′ = 1,

r
(u)
ij = 0 and t

(v)
ij = 0 if {i, j} 6⊆ {k, l,m}.

The set of all shortest path triples is denoted by R and the set of all shortest triangles is
denoted by T .

The key observation is that, for each Ru ∈ R and for each Tv ∈ T , the identity permutation
is an optimal solution of QAP (Ru,D) and QAP (Tv ,D). The optimal values for these QAPs
are 0 and 8, respectively, and these simple QAPs can be used to improve the quality of
lower bounds for an arbitrary grid QAP. Let us decompose the distance matrix F as

F =
∑

u∈R

αuRu +
∑

v∈T

βvTv + Fr, (54)

where Fr is the residual matrix given as

Fr := F −
∑

u∈R

αuRu +
∑

v∈T

βvTv.

For every choice of the parameters αu ≥ 0, u ∈ R, and βv ≥ 0, v ∈ T , and for any
permutation φ we have

Z(F,D, φ) =
∑

u∈R

αuZ(Ru,D, φ) +
∑

v∈T

βvZ(Tv,D, φ) + Z(Fr,D, φ) . (55)

Equality (55) implies

min
φ
Z(F,D, φ) ≥ 8

∑

v∈T

βv + min
φ
Z(Fr,D, φ) ≥

8
∑

v∈T

βv + LB(Fr,D) ,

where LB(Fr,D) is any lower bound for the QAP with flow matrix Fr and distance matrix
D. Clearly, the expression on the right hand side of (55) is a lower bound for the original
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QAP. This lower bound, which depends on the vectors α = (αu), β = (βv), is denoted by
h(α, β). Then, h(0, 0) equals LB(F,D)), and therefore,

max
α≥0,β≥0

h(α, β) ≥ LB(F,D) ,

where a vector is said to be nonnegative if all its components are nonnegative. Hence,
maxα≥0,β≥0 h(α, β) is an improvement upon the bound LB(QAP (F,D)).

Chakrapani et al. [44] improve the Gilmore-Lawler bound (GLB), and the elimination
bound (ELI), by using only the matrices Ru, u ∈ R, for the decomposition. Karisch
et al. [105] use the decomposition scheme (54) to improve the elimination bound (ELI)
(introduced in [88]).

7 Exact Solution Methods

An exact algorithm for a combinatorial optimization problem provides the global optimal
solution to the problem. In this section we will briefly discuss several exact algorithms that
have been used for solving the QAP, like branch and bound, cutting plane and branch and
cut algorithms.

7.1 Branch and Bound

Branch and bound algorithms have been applied successfully to many hard combinatorial
optimization problems, and they appear to be the most efficient exact algorithms for solving
the QAP.

The basic ingredients of branch and bound algorithms are bounding , branching, and the
selection rule. Although many bounding techniques have been developed for the QAP
the most efficient branch and bound algorithms for this problem employ the Gilmore-
Lawler bound (GLB). The reason is that other bounds which outperform GLB in terms
of bound quality are simply to expensive in terms of computation time. However, more
recently some efforts have been made to employ other Gilmore-Lawler-like bounds in branch
and bound algorithms. The bound of Hahn and Grant (HGB) [90], has been used in a
branch and bound algorithm by Hahn, Grant, and Hall [91], and the results are promising.
Pardalos, Ramakrishnan, Resende and Li [150] solve some previously unsolved instances
from QAPLIB by applying a branch and bound algorithm which employs the variance
reduction lower bound.

Three types of branching strategies are mostly used for the QAP: single assignment branch-
ing , see Gilmore [77], Lawler [118], pair assignment branching see Gavett and Plyter [74],
Land [116], Nugent et al. [141], and branching based on relative positioning see Mirchan-
dani and Obata [135]. The single assignment branching which is the most efficient assigns a
facility to a location in each branching step, i.e., each problem is divided into subproblems
by fixing the location of one of the facilities which are not assigned yet. Several rules for
the choice of the facility-location pair to determine the subproblems of a new level of the
search tree have been proposed by different authors. The appropriate rule usually depends
on the bounding technique. If the GLB is employed the above mentioned rule is frequently
formulated in terms of the reduced costs of the last assignment problem solved to bound
the subproblem which is currently being branched [14, 23, 131].

The pair assignment algorithms assign a pair of facilities to a pair of locations at a branch-
ing step, whereas in relative positioning algorithms the levels of the search tree do not
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correspond to the number of facilities already assigned to locations. Here the fixed assign-
ments within each subproblem are determined in terms of distances between facilities, i.e.,
their relative positions. Numerical results show that pair assignment or relative positioning
algorithms are outperformed by single-assignment algorithms.
Roucairol [163] developed another branching rule which does not belong to any of the above
groups, the so-called polytomic or k-partite branching rule. The search tree produced by this
algorithm is not binary as in most of the other approaches. In this case the GLB is employed
and the branching rule is based on the solution φ of the last linear assignment problem solved

to compute the lower bound at the current node of the search tree. Let X
(i)
n be the subset

of Xn (the set of permutations of {1, 2, . . . , n}) consisting of those permutations π such that

π(i) = φ(i). Analogously, X̄
(i)
n is the set of permutations π ∈ Xn, such that π(i) 6= φ(i).

The current node is branched into n+ 1 new nodes with sets of feasible solutions given by

X
(1)
n ,X

(1)
n ∩ X̄

(2)
n , . . . ,X

(1)
n ∩ X

(2)
n ∩ . . . ∩ X

(n−1)
n ∩ X̄

(n)
n ,X

(1)
n ∩ X

(2)
n ∩ . . . ∩X

(n)
n .

Another issue in the implementation of branch and bound algorithms concerns the so-
called selection rule which determines the choice of the subproblem to be branched, i.e.,
the vertex of the search tree to be branched. Several strategies, ranging from problem-
independent depth or breadth first search to instance dependent criteria related to the
maximization of lower bounds or reduced costs, have been tested by different authors.
There seems to be no clear winner among the tested strategies.

Better results on solving large size problems have been achieved lately by parallel implemen-
tations, see Pardalos and Crouse [146], Bruengger, Clausen, Marzetta, and Perregaard [19],
and Clausen and Perregaard [50]. The Nugent et al. test instances [141] are widely con-
sidered as “stubborn” QAP instances and has become an obvious challenge for every new
algorithm designed for solving the QAP to optimality. The largest Nugent et al. test in-
stance which has ever been solved to optimality has size equal to 25 and has been solved
by a parallel branch and bound algorithm which employs a special implementation of the
GLB, see Marzetta [130].

7.2 Traditional Cutting Plane Methods

Traditional cutting plane algorithms for the QAP have been developed by a different au-
thors, Bazaraa and Sherali [15, 16], Balas and Mazzola [9, 10, 11], and Kaufmann and
Broeckx [108]. These algorithms make use of mixed integer linear programming (MILP)
formulations for the QAP which are suitable for Benders’ decomposition. In the vein of
Benders, the MILP formulation is decomposed into a master problem and a subproblem,
called also slave problem, where the master problem contains the original assignment vari-
ables and constraints. For a fixed assignment the slave problem is usually a linear program
and hence, solvable in polynomial time. The master problem is a linear program formulated
in terms of the original assignment variables and of the dual variables of the slave problem,
and is solvable in polynomial time for fixed values of those dual variables. The algorithms
work typically as follows. First, a heuristic is applied to generate a starting assignment.
Then the slave problem is solved for fixed values of the assignment variables implied by
that assignment, and optimal values of the primal and dual variables are computed. If the
dual solution of the slave problem satisfies all constraints of the master problem, we have an
optimal solution for the original MILP formulation of the QAP. Otherwise, at least one of
the constraints of the master problem is violated. In this case, the master problem is solved
with fixed values for the dual variables of the slave problem and the obtained solution is
given as input to the slave problem. The procedure is then repeated until the solution of



7.3 Polyhedral Cutting Planes 37

the slave problem fulfills all constraints of the master problem.

Clearly any solution of the master problem obtained by fixing the dual variables of the
slave problem to some feasible values, is a lower bound for the considered QAP. On the other
side, the objective function value of the QAP corresponding to any feasible setting of the
assignment variables is an upper bound. The algorithm terminates when the lower and the
upper bounds coincide. Generally, the time needed for the upper and the lower bounds to
converge to a common value is too large, and hence these methods may solve to optimality
only very small QAPs. However, heuristics derived from cutting plane approaches produce
good suboptimal solutions in early stages of the search, e.g. Burkard and Bönniger [24] and
Bazaraa and Sherali [16].

7.3 Polyhedral Cutting Planes

Similarly to traditional cutting plane methods also polyhedral cutting planes or branch and
cut algorithms2 make use of an LP or MILP relaxation of the combinatorial optimization
problem to be solved, in our case the QAP. Additionally, polyhedral cutting plane methods
make use of a class of (nontrivial) valid or facet defining inequalities known to be fulfilled
by all feasible solutions of the original problem. If the solution of the relaxation is feasible
for the original problem, we are done. Otherwise, some of the above mentioned valid
inequalities are probably violated. In this case a “cut” is performed, that is, one or more
of the violated inequalities are added to the LP or MILP relaxation of our problem. The
latter is resolved and the whole process is repeated. In the case that none of the valid
inequalities is violated, but some integrality constraint is violated, the algorithm performs
a branching step by fixing (feasible) integer values for the corresponding variable. The
branching steps produce the search tree like in branch and bound algorithms. Each node
of this tree is processed as described above by performing cuts and then by branching it,
if necessary. Clearly, related elements of branch and bound algorithms like upper bounds,
selection and branching rules play a role in branch and cut algorithms. Hence, such an
approach combines elements of cutting plane and branch and bound methods.

The main advantage of polyhedral cutting plane algorithms with respect to traditional
cutting planes relies on the use of cuts which are valid for the whole polytope of the feasible
solutions, and possibly facet defining. Traditional cutting planes instead rely frequently
on cuts which are not valid for the whole polytope of the feasible solutions. In this case
the whole computation has to be done from scratch for different variable fixings. This
requires additional running time and additional amounts of memory. Another and not less
important drawback of traditional cutting plane algorithms is due to the “weakness” of the
cuts they involve. In contrast with cuts produced by facet defining inequalities, the weak
cuts cannot avoid the slow convergence.

As we saw in Section 5 some properties and few facet defining inequalities of the QAP
polytope are already known. But still polyhedral cutting plane methods for the QAP
are not yet backed by a strong theory. However, some efforts to design branch and cut
algorithms for the QAP have been made by Padberg and Rijal [142] and Kaibel [102].
Padberg and Rijal [142] have tested their algorithm on sparse QAP instances from QAPLIB.
The numerical results are encouraging, although the developed software is of preliminary
nature, as claimed by the authors. Kaibel [102] has used branch and cut to compute lower
bounds for QAP instances from QAPLIB. His results are promising especially in the case
where box inequalities are involved.

2This term was originally used by Padberg and Rinaldi [143].



38 8 HEURISTICS

8 Heuristics

Although substantial improvements have been done in the development of exact algorithms
for the QAP, problems of dimension n > 20 are still not practical to solve because of very
high computer time requirements. This makes the development of heuristics indispensable
as algorithms which provide good quality solutions in a reasonable time. Much research has
been devoted to the development of such approaches. We distinguish the following types of
heuristic algorithms:

• Construction methods (CM)

• Limited enumeration methods (LEM)

• Improvement methods (IM)

• Tabu search (TS)

• Simulated annealing (SA)

• Genetic algorithms (GA)

• Greedy randomized adaptive search procedures (GRASP)

• Ant systems (AS)

8.1 Construction Methods

Construction methods were introduced by Gilmore [77]. They are iterative approaches
which usually start with an empty permutation, and iteratively complete a partial permu-
tation into a solution of the QAP by assigning some facility which has not been assigned
yet to some free location. The algorithm is presented in pseudocode in Figure 1. Here
φ0, φ1, . . . , φn−1 are partial permutations, and heur(i) is some heuristic procedure that as-
signs facility i to some location j, and returns j. Γ is the set of already assigned pairs of
facilities to locations. The procedure update constructs a permutation φi by adding the
assignment (i, j) to φi−1. The heuristic heur(i) employed by update could be any heuristic
which chooses a location j for facility i, (i, j) 6∈ Γ, in a greedy fashion or by applying local
search.

One of the oldest heuristics used in practice, the CRAFT heuristic developed by Buffa,
Armour and Vollmann [20], is a construction method. Another construction method which
yields good results has been proposed by Müller-Merbach [140].

8.2 Limited Enumeration Methods

Limited enumeration methods rely on the observation that often enumeration methods (e.g.
branch and bound algorithms) find good solutions in early stages of the search, and employ
then a lot of time to marginally improve that solution or prove its optimality. This behavior
of enumeration methods suggests a way to save time in the case that we are interested in a
good but not necessarily optimal solution: impose some limit to the enumeration process.
This limit could be a time limit, or a limit on the number of iterations the algorithm may
perform.
Another strategy which serves the same goal is to manipulate the lower bound. This can
be done by increasing the lower bound if no improvement in the solution is achieved during
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procedure construction(φ0,Γ)
1 φ = {};
2 do i = 1, . . . , n− 1 →
3 if (i, j) 6∈ Γ →
4 j =heur(i);
5 update(φi, (i, j));
6 Γ = Γ ∪ (i, j);
7 fi;
8 φ = φi;
9 od;
10 return(φ)
end construction;

Figure 1: Pseudo-code for a construction method

a large number of iterations, and would yield deeper cuts in the search tree to speed up
the process. Clearly, such an approach may cut off the optimal solution and hence should
be used carefully, possibly in conjunction with certain heuristics that perform elaborate
searches in the feasible space.

8.3 Improvement methods

These methods belong to the larger class of local search algorithms. A local search procedure
starts with an initial feasible solution and iteratively tries to improve the current solution.
This is done by substituting the latter with a (better) feasible solution from its neighborhood .
This iterative step is repeated until no further improvement can be found. Improvement
methods are local search algorithm which allow only improvements of the current solution in
each iteration. For a comprehensive discussion of theoretical and practical aspects of local
search in combinatorial optimization the reader is referred to the book edited by Aarts and
Lenstra [2].

Basic ingredients of improvement methods (and of local search in general) are the neigh-
borhood and the order in which the neighborhood is scanned. Frequently used neighbor-
hoods for QAPs are the pair-exchange neighborhood and the cyclic triple-exchange neigh-
borhood. In the case of pair-exchanges the neighborhood of a given solution (permutation)
consists of all permutations which can be obtained from the given one by applying a trans-
position to it. In this case, scanning the whole neighborhood, i.e., computing the objective
function values for all neighbors of a given permutation, takes O(n3) time. (The size of
the neighborhood is

(n
2

)
, and it takes O(n) steps to compute the difference of the objective

function values of a permutation π and a permutation π′ in the neighborhood of π.) If the
neighborhood of π is already scanned and π′ is a neighbor of π, then the neighborhood of
π′ can be scanned in O(n2), see Frieze et al. [71].

In the case of cyclic triple-exchanges, the neighborhood of a solution (permutation) π
consists of all permutations obtained from π by a cyclic exchange of some triple of indices.
The size of this neighborhood is O(

(
n
3

)
). Cyclic triple-exchanges do not really lead to better

results when compared with pair-exchanges.

Another important ingredient of improvement methods is the order in which the neigh-
borhood is scanned. This order can be either fixed previously or chosen at random. Given
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a neighborhood structure and a scanning order, a rule for the update of the current solution
(from the current iteration to the subsequent one) should be chosen. The following update
rules are frequently used:

• First improvement

• Best improvement

• Heider’s rule [94]

In the case of first improvement the current solution is updated as soon as the first improving
neighbor solution is found. Best improvement scans the whole neighborhood and chooses
the best improving neighbor solution (if such a solution exists at all). Heider’s rule starts by
scanning the neighborhood of the initial solution in a prespecified cyclic order. The current
solution is updated as soon as an improving neighbor solution is found. The scanning of
the neighborhood of the new solution starts there where the scanning of the previous one
was interrupted (in the prespecified cyclic order).
In order to get better results, improvement methods and local search algorithms in general
are performed several times starting with different initial solutions.

8.4 Tabu Search

Tabu search is a local search method introduced by Glover [79, 80] as a technique to
overcome local optimality. One way to overcome local optimality would be to allow also
the deterioration of the current solution when moving from one iteration to the subsequent
one, in contrast to improvement methods. In the case of tabu search the basic idea is
to “remember” which solutions have been visited in the course of the algorithm, in order
to derive the promising directions for further search. Thus, the memory and not only
the local investigation of the neighborhood of the current solution drives the search. The
reader is referred to the book edited by Glover, Laguna, Taillard, and De Werra [81] for a
comprehensive introduction to tabu search algorithms.
The main ingredients of tabu search are the neighborhood structure, the moves, the tabu
list and the aspiration criterion. A move is an operation which, when applied to a certain
solution π, generates a neighbor π′ of it. In the case of QAPs the neighborhood is the
pair-exchange neighborhood and the moves are usually transpositions. A tabu list is a list
of forbidden or tabu moves, i.e., moves which are not allowed to be applied to the current
solution. The tabu status of the moves changes along with the search and the tabu list is
updated during the search. An aspiration criterion is a condition which, when fulfilled by
a tabu move, cancels its tabu status.
A generic tabu search procedure starts with an initial feasible solution S and selects a
best-quality solution among (a part of) the neighbors of S obtained by non-tabu moves.
Note that this neighboring solution does not necessarily improve the value of the objective
function. Then the current solution is updated, i.e., it is substituted by the selected solution.
Obviously, this procedure can cycle, i.e., visit some solution more than once. In an effort
to avoid this phenomenon a tabu criterion is introduced in order to identify moves which
are expected to lead to cycles. Such moves are then declared tabu and are added to
the tabu list. As, however, forbidding certain moves could prohibit visiting “interesting”
solutions, an aspiration criterion distinguishes the potentially interesting moves among the
forbidden ones. The search stops when a stop criterion (running time limit, limited number
of iterations) is fulfilled.
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There is a lot of freedom in the implementation of different elements of a tabu search al-
gorithms, e.g. the tabu list (length and maintenance), the aspiration criterion, the tabu
criterion. The performance of tabu search algorithms depends very much on the implemen-
tation chosen for its basic ingredients, and there is no general agreement about the best
implementation of any of those.

Different implementations of tabu search have been proposed for the QAP, e.g. a tabu
search with fixed tabu list (Skorin-Kapov [166]), the robust tabu search (Taillard [171]),
where the size of the tabu list is randomly chosen between a maximum and a minimum
value, and the reactive tabu search (Battiti and Tecchiolli [13]) which involves a mechanism
for adopting the size of the tabu list. Reactive tabu search aims at improving the robustness
of the algorithm. The algorithm notices when a cycle occurs, i.e., when a certain solution
is revisited, and increases the tabu list size according to the length of the detected cycle.
The numerical results show that generally the reactive tabu search outperforms other tabu
search algorithms for the QAP (see [13]).
More recently, also parallel implementations of tabu search have been proposed, see e.g.
Chakrapani and Skorin-Kapov [43]. Tabu search algorithms allow a natural parallel im-
plementation by dividing the burden of the search in the neighborhood among several
processors.

8.5 Simulated Annealing

Simulated annealing is a local search approach which exploits the analogy between com-
binatorial optimization problems and problems from statistical mechanics. Kirkpatrick,
Gelatt and Vecchi [110] and Černỳ [42] were among the first authors who recognized this
analogy, and showed how the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller [133]) used to simulate the behavior of a physical many-particle system
can be applied as a heuristic for the traveling salesman problem.

The analogy between a combinatorial optimization problem and a many-particle phys-
ical system basically relies on two facts:

• Feasible solutions of the combinatorial optimization problem correspond to states of
the physical system.

• The objective function values corresponds to the energy of the the states of the phys-
ical system.

In condensed matter physics annealing is known as a cooling process which produces low
energy thermal equilibrium states of a solid in a heat bath. The aim is to reach the so-called
ground state which is characterized by a minimum of energy.
Burkard and Rendl [37] showed that a simulated cooling process yields a general heuristic
which can be applied to any combinatorial optimization problem, as soon as a neighborhood
structure has been introduced in the set of its feasible solutions. In particular Burkard et
al. applied simulated annealing to the QAP. Other simulated annealing (SA) algorithms
for the QAP have been proposed by different authors, e.g. Wilhelm and Ward [175] and
Connolly [53]. All these algorithms employ the pair-exchange neighborhood. They differ
on the way the cooling process or the thermal equilibrium is implemented. The numerical
experiments show that the performance of SA algorithms strongly depends on the values
of the control parameters, and especially on the choice of the cooling schedule.

Simulated annealing (SA) can be modeled mathematically by an inhomogeneous ergodic
Markov chain, and this model has been used for the probabilistic analysis of the convergence
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of simulated annealing algorithms. Under natural conditions on the involved neighborhood
structure and non very restrictive conditions on the slowness of the cooling process it can be
shown that SA asymptotically converges to an optimal solution of the considered problem.
The investigation of the speed of this convergence remains an (apparently difficult) open
problem. For a detailed discussion on the convergence and other theoretical aspects of
simulated annealing the reader is referred to the books by Aarts and Korst [1] and Laarhoven
and Aarts [115].

8.6 Genetic Algorithms

The so-called genetic algorithms (GA) are a nature inspired approach for combinatorial
optimization problems. The basic idea is to adapt the evolutionary mechanisms acting in
the selection process in nature to combinatorial optimization problems. The first genetic
algorithm for optimization problems was proposed by Holland [95] in 1975.

A genetic algorithm starts with a set of initial feasible solutions (generated randomly
or by using some heuristic) called the initial population. The elements of a population are
usually termed “individuals”. The algorithm selects a number of pairs of individuals or
parents from the current population and uses so-called cross-over rules to produce some
feasible solution or child out of each pair of individuals. Further, a number of “bad”
solutions, i.e., solutions yielding to high values of the objective function, is thrown out of
the current population. This process is repeated until a stop criterion, e.g. a time limit, a
limit on the number of iterations, a measure of convergence, is fulfilled. In the course of the
algorithm, mutations or immigrations are applied periodically to the current population to
improve its overall quality by modifying some of the individuals or replacing them by better
ones, respectively. Often local optimization tools are periodically used within GAs resulting
in so-called hybrid algorithms. The search is diversified by means of so-called tournaments.
A tournament consists of applying several runs of a GA starting from different initial
populations and stopping them before they converge. A “better” population is derived as
a union of the final populations of these different runs, and then a new run of the GA is
started over this population. For a good coverage of theoretical and practical issues on
genetic algorithms the reader is referred to Davis [56] and Goldberg [83].

A number of authors have proposed genetic algorithms for the QAP. Standard algo-
rithms e.g. the one developed by Tate and Smith [172], have difficulties to generate the best
known solutions even for QAPs of small or moderate size. Hybrid approaches, e.g. combina-
tions of GA techniques with tabu search as the one developed by Fleurent and Ferland [68]
seem to be more promising. More recently another hybrid algorithm, the so-called greedy
genetic algorithm proposed by Ahuja, Orlin, and Tivari [6] produced very good results on
large scale QAPs from QAPLIB.

8.7 Greedy Randomized Adaptive Search Procedure

The greedy randomized adaptive search procedure (GRASP) was introduced by Feo and
Resende [66] and has been applied successfully to different hard combinatorial optimization
problems [65, 111, 112, 157] and among them to the QAP [124, 148] and the BiQAP [132].
The reader is referred to [66] for a survey and tutorial on GRASP.
GRASP is a combination of greedy elements with random search elements in a two phase
heuristic. It consists of a construction phase and a local improvement phase. In the con-
struction phase good solutions from the available feasible space are constructed, whereas in
the local improvement phase the neighborhood of the solution constructed in the first phase
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is searched for possible improvements. A pseudocode of GRASP is shown in Figure 2. The
input parameters are the size RCLsize of the restricted candidate list (RCL), a maximum
number of iterations, and a random seed. RCL contains the candidates upon which the
sampling related to the construction of a solution in the first phase will be performed.

procedure GRASP(RCLSize,MaxIter,RandomSeed)
1 InputInstance();
2 do k = 1, . . . , MaxIter →
3 ConstructGreedyRandomizedSolution(RCLSize,RandomSeed);
4 LocalSearch(BestSolutionFound);
5 UpdateSolution(BestSolutionFound);
6 od;
7 return BestSolutionFound

end GRASP;

Figure 2: Pseudo-code for a generic GRASP

For the QAP the construction phase consists of two stages. The RCL contains tuples of
partial permutations and values associated to them. Each of these partial permutations
fixes the location of facilities 1 and 2. Such partial permutations are called 2-permutations.
In the first stage a 2-permutation is chosen randomly from the restricted candidate list
(RCL).

Given a QAP instance of size n with flow matrix F = (fij) and distance matrix D = (dij),
the value Cφ,ψ associated with a pair (φ,ψ) of 2-permutations is given as

Cφ,ψ =

2∑

i=1

2∑

j=1

dφ(i)φ(j)fψ(i)ψ(j) .

Clearly, the 2-permutations φ, ψ can be seen as elements of the set K = {(i, j) : i, j =
1, 2, . . . , n, i 6= j}, and since |K| = n(n − 1), there are n2(n − 1)2 pairs (φ,ψ) of 2-
permutations. If we have a symmetric QAP instance with zeros in the diagonal, the above
cost simplifies to

Cφ,ψ = 2dφ(1)φ(2)fψ(1)ψ(2) .

The RCL contains a number of pairs (φ,ψ) - this number equals the RCL size and is denoted
by RCLsize - having the smallest associated costs. In the case of an asymmetric QAP, we
compute the costs Cφ,ψ for all (φ,ψ) and keep the RCLsize smallest among them. In the
symmetric case, we sort the m = n2−n off-diagonal entries of matrix D in ascending order,
and the off-diagonal entries of F in descending order, i.e.,

dk1l1 ≤ dk2l2 ≤ · · · ≤ dkmlm ,

fi1j1 ≥ fi2j2 ≥ · · · ≥ fimjm .

Then, the products dkslsfisjs are the costs associated to pairs of 2-permutations (ks, ls),
(is, js), 1 ≤ s ≤ m, respectively. These costs are sorted in ascending order and the RCLsize
smallest among them are put in RCL. Finally, one pair of 2-permutations from RCL is
chosen at random, and these determines the locations of two facilities which are kept fixed
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in the second stage of the construction phase. Notice that the RCL is constructed only
once, and hence, in constant time with regard to the number of iterations.

In the second stage the remaining n− 2 facilities are assigned to locations. Let the set Γr
be the set of assignments made prior to the r − th assignment:

Γr := {(j1, p1), (j2, p2), . . . , (jr−1, pr−1)}.

Note that at the start of stage 2, |Γ3| = 2, since two assignments are made in the first stage,
and r = |Γr| + 1 throughout the second stage. In stage 2 we also construct an RCL which
contains the single assignments m→ s, (m, s) 6∈ Γr, and their associated costs C̄m,s defined
as

C̄m,s :=
∑

(i,j)∈Tr

dφ(i)φ(j)fψ(i)ψ(j),

where

Tr := {(i, j) : i, j = 1, 2, . . . , r, {i, j} ∩ {r} 6= ∅} ,
and φ,ψ are partial permutations resulting from the r − 1 assignment which are already
fixed and the assignment (m, s). In the case of a symmetric QAP the cost Cm,s is given by
the simpler formula

C̄ms = 2
r−1∑

i=1

dmφ(i)fsψ(i). (56)

Among the U = (n− r+ 1)2 possible assignments (m, s), those with the RLSsize smallest
associated costs are included in RCL. One assignment is then selected at random from RCL
and the set Γr is updated

Γr = Γr ∪ {(m, s)}.
This process is repeated until a permutation of {1, 2, . . . , n}, i.e., a feasible solution of the
considered QAP, results. Stage 2 of the construction phase of GRASP in pseudocode is
shown in Figure 3. Procedure ConstructionStage2 returns the set Γ with n − 1 assign-
ments, the last assignment being then trivial. The inheap() and outheap() procedures
are used for sorting and choosing the smallest among the computed C̄m,s costs, respectively.
The procedure random generates a random number in the interval [1, RLSsize].

Finally, the second phase of the algorithm completes a GRASP iteration by applying an
improvement method starting from the solution constructed in the first phase and employing
the 2-exchange neighborhood (see also Section 8.3).

8.8 Ant Systems

Ant system (AS) are recently developed heuristic techniques for combinatorial optimization
which try to imitate the behavior of an ant colony in search for food. Initially the ants
search for food in the vicinity of their nest in a random way. As soon as an ant finds a source
of food, it takes some food from the source and carries it back to the nest. During this trip
back the ant leaves a trail of a substance called pheromone on the ground. The pheromone
trail serves to guide the future search of ants towards the already found source of food. The
intensity of the pheromone on the trail is proportional to the amount of food found in the
source. Thus, the ways to rich sources of food visited frequently (by a large number of ants)
will be indicated by stronger pheromone trails. In an attempt to imitate the behavior of
ants to derive algorithms for combinatorial optimization problems, the following analogies
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procedure ConstructionStage2(α, (j1, p1), (j2, p2))
1 Γ = {(j1, p1), (j2, p2)};
2 do r = 2, . . . , n− 1 →
3 U = 0;
4 do m = 1, . . . , n→
5 do s = 1, . . . , n→
6 if (m, s) 6∈ Γ →
7 C̄ms =

∑
(i,j)∈Tr

ap(i)p(j)bq(i)q(j);

8 inheap(Cms);
9 U = U + 1;
10 fi;
11 od;
12 od;
13 t =random[1, ⌊αU⌋];
14 do i = 1, . . . , t→
15 C̄ms =outheap();
16 od;
17 Γ = Γ ∪ {(m, s)};
18 od;
19 return Γ
end ConstructStage2;

Figure 3: Stage 2 of Construction Phase of GRASP

can be exploited: a) the area searched by the ants resembles the set of feasible solutions,
b) the amount of food at food sources resembles the value of the objective function, and c)
the pheromone trail resembles a component of adaptive memory.

AS were originally introduced by Dorigo [59] and Colorni, Dorigo, and Maniezzo [51] and
have already produced good results for well known problems like the traveling salesman
problem (TSP) and the QAP [52, 72].

In the case of the QAP the pheromone trail which is also the key element of an AS, is
implemented by a matrix T = (τij). τij is a measure for the desirability of locating facility
i at location j in the solutions generated by the ants (the algorithm). To illustrate the idea
we briefly describe the algorithm of Gambardella, Taillard and Dorigo [72].

The algorithm is iterative and constructs a fixed number, say m, of solutions in each
iteration. (This number is a control parameter and is also thought as number of ants.)
In the first iteration these solutions are generated randomly, whereas in the subsequent
iteration they are updated by exploiting the information contained in the pheromone trail
matrix T . Initially the pheromone trail matrix is a constant matrix; the constant is inverse-
proportional to the best value of the objective function found so far. This is in compliance
with the behavior of ants whose search directions are initially chosen at random. Let us
denote the best solution found so far by φ∗ and its corresponding value of the objective
function by f(φ∗). In the further iterations the entries τiφ∗(i) of T are increased by the same
value which is proportional to f(φ∗). The update of the m solutions in each iteration is
done first by means of the pheromone trail matrix, and then by applying some improvement
method. In both cases the update consists of swapping the locations for a sequence of
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facility pairs. First, the current solution is updated by swapping the locations of pairs of
facilities chosen so as to maximize the (normalized) sum of the corresponding pheromone
trail entries. Then, the solution obtained after this update is improved by applying some
improvement methods, e.g. first or best improvement (see also Section 8.3). As soon as an
improvement of the best known solution is detected an intensification component “forces
the ants” to further explore the part of the solution space where the improvement was
found. If after a large number of iterations there is no improvement of the best known
solution, a diversification - which is basically a new random start - is performed.

Numerical results presented in [52, 72] show that ant systems are competitive heuristics es-
pecially for real life instances of the QAP with a few very good solutions clustered together.
For randomly generated instances which have many good solutions distributed somehow
uniformly in the search space, AS are outperformed by other heuristics, e.g. genetic algo-
rithms or tabu search approaches.

9 Available Computer Codes for the QAP

Burkard, Karisch, and Rendl [34] have compiled a library of QAP instances (QAPLIB)
which is widely used to test bounds, exact algorithms, and heuristics for the QAP. The
instances collected in QAPLIB are due to different authors and range from instances arising
in real life applications to instances generated randomly only for test purposes. Many of
these instances have not been solved to optimality yet, the most celebrated among them
being the instances of Nugent, Vollmann, and Ruml [141] of size larger than 25. QAPLIB
can be found at http://www.opt.math.tu-graz.ac.at/˜karisch/qaplib.

A number of codes to compute lower bounds are available. A FORTRAN code which
computes the GLB is due to Burkard and Derigs [29], and is able to compute the bound
for instances of size up to 256. The source code can be downloaded from the QAPLIB web
page. Another FORTRAN code which can be downloaded from the QAPLIB web page
computes the elimination bound (ELI) for symmetric QAP instances of size up to 256.

Recently, Espersen, Karisch, Çela, and Clausen [64] have developed QAPpack which is a
JAVA package containing a branch and bound algorithm to solve the QAP. In QAPpack a
number of bounds based on linearization are implemented: the Gilmore-Lawler bound [77,
118], the bound of Carraresi and Malucelli [40], the bound of Adams and Johnson [3],
the bound of Hahn and Grant [90], and the bound of Karisch, Çela, Clausen, and Es-
persen [104]. The implementation is based on the dual framework provided by Karisch et
al. [104]. QAPpack can be found at http://www.imm.dtu.dk/˜te/QAPpack.
Besides QAPpack, a FORTRAN code of the branch and bound algorithm developed by
Burkard and Derigs [29] can be downloaded from the QAPLIB web page.

There are also some codes of heuristics available. The (compressed) FORTRAN source
file - 608.Z - of a heuristic due to West [174], can be downloaded at ftp://netlib.att.com
in /netlib/toms.

The source files (compressed tar-files) of two FORTRAN implementations of GRASP for
dense QAPs by Resende, Pardalos and Li [156] and sparse QAPs by Pardalos, Pitsoulis and
Resende [149] can be downloaded from Resende’s web page at

http://www.research.att.com/˜mgcr/src/index.html.
The source file of a FORTRAN implementation of the simulated annealing algorithm of
Burkard and Rendl [37] can be downloaded from the QAPLIB web page.
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The source file of a C++ implementation of the simulated annealing algorithm of Con-
nolly [53], due to Taillard, can be downloaded from Taillard’s web page at

http://www.idsia.ch/˜eric/codes.dir/sa qap.c.
Also a source file of a PASCAL implementation of Taillard’s robust tabu search [171] can
be found at Taillard’s web page.

Finally, the source file of a FORTRAN implementation of Li and Pardalos’ generator
for QAP instances with known optimal solution [122] can be obtained by sending an email
to coap@math.ufl.edu with subject line send 92006.

10 Polynomially Solvable Cases

Since the QAP is NP-hard, restricted versions which can be solved in polynomial time are
an interesting aspect of the problem. A basic question arising with respect to polynomially
solvable versions is the identification of those versions and the investigation of the border
line between hard and easy versions of the problem. There are two ways to approach this
topic: first, find structural conditions to be imposed on the coefficient matrices of the QAP
so as to obtain polynomially solvable versions, and secondly, investigate other combinatorial
optimization or graph-theoretical problems which can be formulated as QAPs, and embed
the polynomially solvable versions of the former into special cases of the later. These two
approaches yield two groups of restricted QAPs which are briefly reviewed in this section.
For a detailed information on this topic the reader is referred to [41].

Most of the restricted versions of the QAP with specially structured matrices involve
Monge matrices or other matrices having analogous properties. A matrix A = (aij) is a
Monge matrix iff the following inequalities are fulfilled for each 4-tuples of indices i, j, k, l,
i < k, j < l:

aij + akl ≤ ail + akj, (Monge inequalities).

A matrix A = (aij) is an Anti-Monge matrix iff the following inequalities are fulfilled
for each 4-tuples of indices i, j, k, l, i < k, j < l:

aij + akl ≥ ail + akj, (Anti-Monge inequalities).
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Figure 4: The sum of the depicted entries taken with the cor-
responding signs must be nonnegative: a) Monge inequality, b)
Anti-Monge inequality.
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A simple example of Monge and Anti-Monge matrices are the sum matrices; the entries
of a sum matrix matrix A = (aij) are given as aij = αi + βj , where (αi) and (βj) are
the generating row and column vector, respectively. A product matrix A is defined in an
analogous way: its entries are given as aij = αiβj , where (αi), (βj) are the generating
vectors. If the row generating vector (αi) and the column generating vectors (βi) are sorted
non-decreasingly, then the product matrix (αiβj) is an Anti-Monge matrix.

In contrast with the traveling salesman problem, it turns out that the QAP with both
coefficient matrices being Monge or Anti-Monge is NP-hard, whereas the complexity of a
QAP with one coefficient matrix being Monge and the other one being Anti-Monge is still
open, see Burkard, Çela, Demidenko, Metelski, and Woeginger [26] and Çela [41]. However,
some polynomially solvable special cases can be obtained by imposing additional conditions
on the coefficient matrices. These special cases involve very simple matrices like product
matrices or so-called chess-board matrices. A matrix A = (aij) is a chess-board matrix if
its entries are given by aij = (−1)i+j . These QAPs can either be formulated as equivalent
LAPs, or they are constant permutation QAPs (see [26, 41]), i.e., their optimal solution can
be given before hand, without knowing the entries of their coefficient matrices. A few other
versions of the QAP involving Monge and Anti-Monge matrices with additional structural
properties can be solved by dynamic programming.

Other restricted versions of the QAP involve matrices with a specific diagonal structure
e.g. circulant and Toeplitz matrices. An n×n matrix A = (aij) is called a Toeplitz matrix
if there exist numbers c−n+1, . . ., c−1, c0, c1, . . ., cn−1 such that aij = cj−i, for all i, j.

A matrix A is called a circulant matrix if it is a Toeplitz matrix and the generating numbers
ci fulfill the conditions ci = cn−i, for 0 ≤ i ≤ n− 1. In other words, a Toeplitz matrix has
constant entries along lines parallel to the diagonal, whereas a circulant is given by its first
row and the entries of the i−th row resembles the first row shifted by i − 1 places to the
right.

QAPs with one Anti-Monge (Monge) matrix and one Toeplitz (circulant)
matrix. In general these versions of the QAP remain NP-hard unless additional conditions,
e.g. monotonicity, are imposed on the coefficient matrices. A well studied problem is the so
called Anti-Monge–Toeplitz QAP where the rows and columns of the Anti-Monge matrix are
non-decreasing, investigated by Burkard, Çela, Rote and Woeginger [28]. It has been shown
that this problem is NP-hard and contains as a special case the so called turbine problem
introduced by Mosewich [137] and formulated as a QAP by Laporte and Mercure [117]. In
the turbine problem we are given a number of blades to be welded in regular spacing around
the cylinder of the turbine. Due to inaccuracies in the manufacturing process the weights of
the blades differ slightly and consequently the gravity center of the system does not lie on
the rotation axis of the cylinder, leading to instabilities. In an effort to make the system as
stable as possible, it is desirable to locate the blades so as to minimize the distance between
the center of gravity and the rotation axis. The mathematical formulation of this problem
leads to an NP-hard Anti-Monge–Toeplitz QAP. (For more details and for a proof of NP-
hardness see Burkard et al. [28].) It is probably interesting that the maximization version
of this problem is polynomially solvable. Further polynomially solvable special cases of the
Anti-Monge–Toeplitz QAP arise if additional constraints e.g. benevolence or k-benevolence
are imposed on the Toeplitz matrix. These conditions are expressed in terms of properties
of the generating function of these matrices, see Burkard et al. [28].

The polynomially solvable QAPs with one Anti-Monge (Monge) matrix and the other one
Toeplitz (circulant) matrix described above, are all constant permutation QAPs. The
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techniques used to prove this fact and to identify the optimal permutation is called reduction
to extremal rays. This technique exploits two facts: first, the involved matrix classes form
cones, and secondly, the objective function of the QAP is linear with respect to each of the
coefficient matrices. These two facts allow us to restrict the investigations to instances of the
QAP with 0-1 coefficient matrices which are extremal rays of the above mentioned cones.
Such instances can then be handled by elementary means (exchange arguments, bounding
techniques) more easily that the general given QAP. The identification of polynomially
solvable special cases of the QAP which are not constant permutation QAPs and can be
solved algorithmically remains a challenging open question.

Another class of matrices similar to the Monge matrices are the Kalmanson matrices. A
matrix A = (aij) is a Kalmanson matrix if it is symmetric and its elements satisfy the
following inequalities for all indices i, j, k, l, i < j < k < l:

aij + akl ≤ aik + ajl, ail + ajk ≤ aik + ajl.

For more information on Monge, Anti-Monge and Kalmanson matrices, and their proper-
ties the reader is referred to the survey article of Burkard, Klinz and Rudolf [35]. The
Koopmans-Beckmann QAP with one coefficient matrix being is a Kalmanson matrix and
the other one a Toeplitz matrix, has been investigated by Dĕıneko and Woeginger [57]. The
computational complexity of this problem is an open question, but analogously as in the
case of the Anti-Monge–Toeplitz QAP, polynomially solvable versions of the problem are
obtained by imposing additional constraints to the Toeplitz matrix.

Further polynomially solvable cases arise as QAP formulations of other problems, like
the linear arrangement problem, minimum feedback arc set problem, packing problems in
graphs and subgraph isomorphism, see [26, 41]. Polynomially solvable versions of these
problems lead to polynomially solvable cases of the QAP. The coefficient matrices of these
QAPs are the (weighted) adjacency matrices of the underlying graphs, and the special
structure of these matrices is imposed by properties of these graphs. The methods used
to solve these QAPs range from graph theoretical algorithms (in the case of the linear
arrangement problem and the feedback arc set problem), to dynamic programming (in the
case of subgraph isomorphism).

11 QAP Instances with Known Optimal Solution

[QAPs with known solution] Since the QAP is a very hard problem from a practical point
of view, often heuristics are the only reasonable approach to solve it, and so far there
exists no performance guarantees for any of the algorithms developed for the QAP. One
possibility to evaluate the performance of heuristics and to compare different heuristics
is given by QAP instances with known optimal solution. Heuristics are applied to these
instances and the heuristic solution is compared to the optimal one known before hand. The
instances with known optimal solution should ideally have two properties: first, they should
be representative in terms of their hardness, and secondly, they should not be especially
easy for any of the heuristics.

Two generators of QAP instances with known optimal solution have been proposed so
far: Palubeckis’ generator [144] and the generator proposed by Li and Pardalos [122].

The first method for generating QAP instances with a known optimal solution was
proposed by Palubeckis [144] in 1988. The input of the Palubeckis’ algorithm consists
of the size n of the instance to be generated, the optimal solution (permutation) π of the
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output instance, two control parameters w and z, where z < w, and the distance matrix A of
an r× s grid with rs = n. A contains rectilinear distances also called Manhattan distances,
i.e., the distance aij between two given knots i, j lying in rows ri, rj and in columns ci,
cj , respectively, is given by aij = |ri − rj | + |ci − cj |. The output of the algorithm is a
second matrix B such that π is an optimal solution of QAP (A,B). The idea is to start
with a matrix B such that QAP (A,B) is a trivial instance with optimal solution π. Then
B is transformed such that QAP (A,B) is not any more trivial, but π continues to be its
optimal solution.

Palubeckis starts with a constant matrix B = (bij) with bij = w. QAP (A,B) is a trivial
problem because all permutations yield the same value of the objective function and thus,
are optimal solutions. Hence, also the identity permutation id is an optimal solution of
QAP (A,B). Then matrix B is iteratively transformed so that it is not a constant matrix
any more and the identity permutation remains an optimal solution of QAP (A,B). In
the last iteration the algorithm constructs an instance QAP (A′, B) with optimal solution
π with the help of QAP (A,B) with optimal solution id, by setting A′ = (aπ(i)π(j)). The
optimal value of QAP (A′, B) equals w

∑n
i=1

∑n
j=1 aij.

Cyganski, Vaz and Virball [55] have observed that the QAP instances generated by
Palubeckis’ generator are “easy” in the sense that their optimal value can be computed in
polynomial time by solving a linear program. (For an accessible proof of this result the
reader is referred to [41].) Notice, however, that nothing is known about the computational
complexity of QAP instances generated by Palubeckis’ generator. We believe that finding an
optimal solution for these QAPs is NP-hard, although the corresponding decision problem
is polynomially solvable.

Another generator of QAP instances with known solution has been proposed by Li and
Pardalos [122]. As Palubeckis’ generator, Li and Pardalos starts with a trivial instance
QAP (A,B) with the identity permutation id as optimal solution and iteratively transforms
A and B so that the resulting QAP instance still has the optimal solution id but is not
trivial any more. The transformations are such that for all i, j, i′, j′, aij ≥ ai′j′ is equivalent
to bij ≤ b′ij at the end of each iteration.

If the coefficient matrices are considered as weighted adjacency matrices of graphs,
each iteration transforms entries corresponding to some specific subgraph equipped with
signs on the edges and hence called sign-subgraphs. The application of Li and Pardalos’
algorithm with different sign-subgraphs yields different QAP generators. A number of
generators involving different sign-subgraphs, e.g. subgraphs consisting of a single edge,
signed triangles and signed spanning trees have been tested. It is perhaps interesting and
surprising that QAP instances generated by involving more complex sign-subgraphs are
generally “easier” than those generated by involving subgraphs consisting of single edges.
Here a QAP instance is considered to be “easy”, if most heuristics applied to it find a
solution near to the optimal one in a relatively short time. Nothing is known about the
complexity of QAP instances generated by the generator of Li and Pardalos, since the
arguments used to analyze Palubeckis’ generator do not apply in this case.

12 Asymptotic Behavior

The QAP shows an interesting asymptotic behavior: under certain probabilistic conditions
on the coefficient matrices the QAP, the ratio between its “best” and “worst” values of
the objective function approaches 1, as the size of the problem approaches infinity. This
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asymptotic behavior suggests that the relative error of every heuristic method vanishes as
the size of the problem tends to infinity, i.e., every heuristic finds almost always an almost
optimal solution when applied to QAP instances which are large enough. In other words
the QAP becomes in some sense trivial as the size of the problem tends to infinity. Burkard
and Fincke [32] identify a common combinatorial property of a number of problems which,
under natural probabilistic conditions on the problem data, behave as described above.
This property seems to be also the key for the specific asymptotic behavior of the QAP.

In an early work Burkard and Fincke [31] investigate the relative difference between the
worst and the best value of the objective function for Koopmans-Beckmann QAPs. They
first consider the case where the coefficient matrix D is the matrix of pairwise distances
of points chosen independently and uniformly from the unit square in the plane. Then
the general case where entries of the flow and distance matrices F and D are independent
random variables taken from a uniform distribution on [0, 1] is considered. In both cases it
is shown that the relative difference mentioned above approaches 0 with probability tending
to 1 as the size of the problem tends to infinity.
Later Burkard and Fincke [32] consider the ratio between the objective function values
corresponding to an optimal (or best) and a worst solution of a generic combinatorial
optimization problem described below.
Consider a sequence Pn, n ∈ IN, of combinatorial optimization (minimization) problems
with sum objective function as described in Section 3. Let En and Fn be the ground set
and the set of feasible solutions of problem Pn, respectively. Moreover, let cn : En → IR+

and f : F → IR+ be the nonnegative cost function and the objective function for problem
Pn, respectively, For n ∈ IN, an optimal solution Xopt minimizes the objective function,
whereas a worst solution Xwor ∈ Fn maximizes the objective function and is defined as
follows:

f(Xwor) =
∑

x∈Xwor

cn(x) = max
X∈F

f(X) = max
X∈F

∑

x∈X

cn(x).

It is shown in [32] that the behavior of the ratio f(Xopt)/f(Xwor) is strongly related to
the ratio ln |Fn|/|Xn| between the cardinality of the set of feasible solutions Fn and the
cardinality of an arbitrary feasible solution Xn, under the assumption that all feasible
solutions have the same cardinality.

Theorem 12.1 (Burkard and Fincke [32], 1985)
Let Pn be a sequence of combinatorial minimization problems with sum objective function

as described above. Assume that the following conditions are fulfilled:

(BF1) For all X ∈ Fn, |X| = |X(n)|, where X(n) is some feasible solution in Fn.

(BF2) The costs cn(x), x ∈ X, X ∈ Fn, n ∈ IN, are random variables identically dis-
tributed on [0, 1]. The expected value E = E(cn(x)) and the variance σ2 = σ2(cn(x)) >
0 of the common distribution are finite. Moreover, for all X ∈ Fn, n ∈ IN, the vari-
ables cn(x), x ∈ X, are independently distributed.

(BF3) |Fn| and |X(n)| tend to infinity as n tends to infinity and moreover,

lim
n→∞

λ0|X(n)| − ln |Fn| → +∞

where λ0 is defined by λ0 := (ǫ0σ/(ǫ0 + 2σ2))2 and ǫ0 fulfills

0 < ǫ0 < σ2 and 0 <
E + ǫ0
E − ǫ0

≤ 1 + ǫ , (57)
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for a given ǫ > 0.

Then, as n→ ∞

P





max
X∈Fn

∑
x∈X

cn(x)

min
X∈Fn

∑
x∈X

cn(x)
< 1 + ǫ



 ≥ 1 − 2|Fn| exp(−|X(n)|λ0) → 1 .

The combinatorial condition represented by the limit in (BF3) says that the cardinality
of the feasible solutions is large enough with respect to the cardinality of the set of feasible
solutions. Namely, the result of the theorem is true if the following equality holds:

lim
n→∞

ln |Fn|
|X(n)| = 0

The other conditions of Theorem 12.1 are natural probabilistic requirements on the
coefficients of the problem. Theorem 12.1 states that for each ǫ > 0, the ratio between
the best and the worst value of the objective function lies on (1− ǫ, 1 + ǫ), with probability
tending to 1 , as the “size” of the problem approaches infinity. Thus, we have convergence
with probability. Under one additional natural (combinatorial) assumption (condition (S3)
of the theorem below), Szpankowski strengthens this result and improves the range of the
convergence to almost surely . In the almost sure convergence the probability that the above
mentioned ratio tends to 1 is equal to 1. (Detailed explanations on the probabilistic notions
used in every text book on probability theory.)

Theorem 12.2 (Szpankowski [170], 1995)
Let Pn be a sequence of combinatorial minimization problems with sum objective function
as above. Assume that the following conditions are fulfilled:

(S1) For all X ∈ Fn, |X| = |X(n)|, where X(n) is some feasible solution in Fn.

(S2) The costs cn(x), x ∈ X, X ∈ Fn, n ∈ IN, are random variables identically and
independently distributed on [0, 1]. The expected value E = E(cn(x)), the variance,
and the third moment of the common distribution are finite.

(S3) The worst values of the objective function, max
X∈Fn

∑
x∈X

cn(x), form a nondecreasing

sequence for increasing n.

(S4) |Fn| and |X(n)| tend to infinity as n tends to infinity and moreover, ln |Fn| = o(|X(n)|).

Then, the following equalities hold almost surely:

min
X∈Fn

∑

x∈X

cn(x) = |X(n)|E − o(|X(n)|)

max
X∈Fn

∑

x∈X

cn(x) = |X(n)|E + o(|X(n)|)

Theorems 12.1 and 12.2 can be applied to the QAP. The reason is that the QAP fulfills
the combinatorial condition (S4) in Theorem 12.2 (and therefore, also condition (BF3) in
Theorem 12.1). Thus, we immediately get the following corollary:
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Corollary 12.3 Consider a sequence of problems QAP (A(n), B(n)) for n ∈ IN, with n× n

coefficient matrices A(n) =
(
a

(n)
ij

)
and B =

(
b
(n)
ij

)
. Assume that a

(n)
ij and b

(n)
ij , n ∈ IN,

1 ≤ i, j ≤ n, are independently distributed random variables on [0,M ], where M is a

positive constant. Moreover, assume that entries a
(n)
ij , n ∈ IN, 1 ≤ i, j ≤ n, have the same

distribution, and entries b
(n)
ij , n ∈ IN, 1 ≤ i, j ≤ n, have also the same distribution (which

does not necessarily coincide with that of a
(n)
ij ). Furthermore, assume that these variables

have finite expected values, variances and third moments.

Let π
(n)
opt and π(n)

wor
denote an optimal and a worst solution of QAP (A(n), B(n)), respectively,

i.e.,

Z
(
A(n), B(n), π

(n)
opt

)
= min

π∈Sn

Z
(
A(n), B(n), π

)

and

Z
(
A(n), B(n), π(n)

wor

)
= max

π∈Sn

Z
(
A(n), B(n), π

)

Then the following equality holds almost surely:

lim
n→∞

Z
(
A(n), B(n), π

(n)
opt

)

Z
(
A(n), B(n), π

(n)
wor

) = 1

The above result suggests that the value of the objective function of QAP (A(n), B(n))
(corresponding to an arbitrary feasible solution) gets somehow close to its expected value
n2E(A)E(B), as the size of the problem increases, where E(A) and E(B) are the expected

values of a
(n)
ij and b

(n)
ij , n ∈ IN, 1 ≤ i, j ≤ n, respectively. Frenk, Houweninge, and Rinnooy

Kan [69] and Rhee [159, 160] provide different analytical evaluations for this “getting close”,
by imposing different probabilistic conditions on the data. The following theorem states
two important results proved in [69] and [160].

Theorem 12.4 (Frenk et al. [69], 1986, Rhee [160], 1991)
Consider the sequence of QAP (A(n), B(n)), n ∈ IN, as in Corollary 12.3. Assume that the
following conditions are fulfilled:

(C1) a
(n)
ij , b

(n)
ij , n ∈ IN, 1 ≤ i, j ≤ n, are random variables independently distributed on

[0,M ].

(C2) a
(n)
ij , n ∈ IN, 1 ≤ i, j ≤ n, have the same distribution on [0,M ]. b

(n)
ij , n ∈ IN,

1 ≤ i, j ≤ n, have also the same distribution on [0,M ].

Let E(A), E(B) be the expected values of the variables a
(n)
ij and b

(n)
ij , respectively. Then,

there exists a constant K1 (which does not depend on n), such that the following inequality
holds almost surely, for π ∈ Sn, n ∈ IN

lim sup
n→∞

√
n√

log n

∣∣∣∣∣
Z(A(n), B(n), π)

n2E(A)E(B)
− 1

∣∣∣∣∣ ≤ K1

Moreover, let Y be a random variable defined by

Y = Z
(
A(n), B(n), π

(n)
opt

)
− n2E(A)E(B) ,
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where π
(n)
opt is an optimal solution of QAP (A(n), B(n)). Then there exists another constant

K2, also independent of the size of the problem, such that

1

K2
n3/2(log n)1/2 ≤ E(Y ) ≤ K2n

3/2(log n)1/2

P {|Y − E(Y )| ≥ t} ≤ 2 exp

( −t2
4n2‖A‖2

∞‖B‖2
∞

)

for each t ≥ 0, where E(Y ) denotes the expected value of variable Y and ‖A‖∞ (‖B‖∞) is
the so-called row sum norm of matrix A (B) defined by ‖A‖∞ = max1≤i≤n

∑n
j=1 |aij |.

These results on the asymptotic behavior of the QAP have been exploited by Dyer,
Frieze, and McDiarmid [60] to analyze the performance of branch and bound algorithms
for QAPs with coefficients generated randomly as described above. Dyer et al. have shown
that for such QAPs the optimal value of the continuous relaxation of Frieze and Yadegar’s
linearization (17)-(24) is in O(n) with probability tending to 1 as the size n of the QAP
tends to infinity. Hence the gap between the optimal value of this continuous relaxation
and the optimal value of the QAP grows like O(n) with probability tending to 1 as n tends
to infinity. This result leads to the following theorem.

Theorem 12.5 (Dyer, Frieze, and McDiarmid [60], 1986)
Consider any branch and bound algorithm for solving a QAP with randomly generated
coefficients as in Corollary 12.3, that uses single assignment branching and employs a bound
obtained by solving the continuous relaxation of the linearization (17)-(24). The number of
branched nodes explored is at least n(1−o(1))n/4 with probability tending to 1 as the size n of
the QAP tends to infinity.

13 Related Problems

One possibility to obtain generalizations of the QAP is to consider objective functions of
higher degree and obtain in this way cubic, biquadratic and generally N -adic assignment
problems (see e.g. [118]). For the cubic assignment problem for example, we have n6 cost
coefficients cijklmp where i, j, k, l,m, p = 1, . . . , n, and the problem is given as follows:

min

n∑

i,j=1

n∑

k,l=1

n∑

m,p=1

cijklmpxijxklxmp

s.t (xij) ∈ Xn .

As it is noted in [118], we can construct an n3×n3 matrix S containing the cost coefficients,
such that the cubic assignment problem is equivalent to the LAP

min 〈S, Y 〉
s.t. Y = X ⊗X ⊗X,

X ∈ Xn.

In an analogous way the LAP can be extended to any N -adic assignment problem, by
considering the solution matrix Y to be the Kronecker N th power of a permutation matrix
in Xn.
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Another modification of the objective function which yields a problem related to the
QAP, the bottleneck quadratic assignment problem (BQAP), is the substitution of the sum
by a max operation. The first occurrence of the BQAP is due to Steinberg [168] and arises
as an application in backboard wiring while trying to minimize the maximum length of the
involved wires (see also Section 1).

In this section several of generalizations and problems related to the QAP are presented,
for which real applications have been found that initiated an interest in analyzing them and
proposing solution techniques.

13.1 The Bottleneck QAP

In the bottleneck quadratic assignment problem (BQAP) of size n we are given an n × n
flow matrix F and an n × n distance matrix D, and wish to find a permutation φ ∈ Sn
which minimizes the objective function

max{fijdφ(i)φ(j) : 1 ≤ i, j ≤ n} .
A more general BQAP analogous to the QAP in (2) is obtained if the coefficients of the
problem are of the form cijkl, 1 ≤ i, j, k, l ≤ n:

min
φ∈Sn

max
1≤i,j≤n

cijφ(i)φ(j) .

Besides the application in backboard wiring mentioned above, the BQAP has many other
applications. Basically, all QAP applications give raise to applications of the BQAP because
it often makes sense to minimize the largest cost instead of the overall cost incurred by some
decision. A well studied problem in graph theory which can be modeled as a BQAP is the
bandwidth problem. In the bandwidth problem we are given an undirected graph G = (V,E)
with vertex set V and edge set E, and seek a labeling of the vertices of G by the numbers
1, 2, . . . , n, where |V | = n, such that the minimum absolute value of differences of labels of
vertices which are connected by an edge is minimized. In other words, we seek a labeling
of vertices such that the maximum distance of 1-entries of the resulting adjacency matrix
from the diagonal is minimized, i.e., the bandwidth of the adjacency matrix is minimized.
It is easy to see that this problem can be modeled as a special BQAP with flow matrix
equal to the adjacency matrix of G for some arbitrary labeling of vertices, and distance
matrix D = (|i− j|).
The BQAP is NP-hard since it contains the bottleneck TSP as a special case. (This is
analogous to the fact that the QAP contains the TSP as a special case, as it is shown
in Section 13.4). Some enumeration algorithms to solve BQAP to optimality have been
proposed by Burkard [22]. These algorithms employ a Gilmore-Lawler-like bound for the
BQAP which involves in turn the solution of bottleneck linear assignment problems. The
algorithm for the general BQAP involves also a threshold procedure useful to reduce to 0
as many coefficients as possible.

Burkard and Fincke [30] investigated the asymptotic behavior of the BQAP and proved
results analogous to those obtained for the QAP: If the coefficients are independent random
variables taken from a uniform distribution on [0, 1], then the relative difference between
the worst and the best value of the objective function approaches 0 with probability tending
to 0 as the size of the problem approaches infinity.
The BQAP and the QAP are special cases of a more general quadratic assignment problem
which can be called the algebraic QAP (in analogy to the algebraic linear assignment prob-
lem (LAP) introduced by Burkard, Hahn, and Zimmermann [33]). If (H, ∗,≺) is a totally
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ordered commutative semigroup with composition ∗ and order relation ≺, the algebraic
QAP with cost coefficients cijkl ∈ H is formulated as

min
φ∈Sn

c11φ(1)φ(1) ∗ c12φ(1)φ(2) ∗ . . . ∗ c1nφ(1)φ(n) ∗ . . . ∗ cnnφ(n)φ(n) .

The study of the bottleneck QAP and more generally the algebraic QAP was the starting
point for the investigation of a number of algebraic combinatorial optimization problem with
coefficients taken from linearly ordered semimodules e.g. linear assignment and transporta-
tion problems, flow problems etc. The reader is referred to Burkard and Zimmermann [38]
for a detailed discussion on this topic.

13.2 The BiQuadratic Assignment Problem

A generalization of the QAP is the BiQuadratic Assignment Problem, denoted BiQAP,
which is essentially a quartic assignment problem with cost coefficients formed by the
products of two four-dimensional arrays. More specifically, consider two n4 × n4 arrays
F = (fijkl) and D = (dmpst). The BiQAP can then be stated as:

min
n∑

i,j=1

n∑

k,l=1

n∑

m,p=1

n∑

s,t=1

fijkldmpstximxjpxksxlt

s.t.

n∑

i=1

xij = 1, j = 1, 2, . . . , n,

n∑

j=1

xij = 1, i = 1, 2, . . . , n,

xij ∈ {0, 1}, i, j = 1, 2, . . . , n.

The major application of the BiQAP arises in Very Large Scale Integrated (VLSI) circuit
design. The majority of VLSI circuits are sequential circuits, and their design process
consists of two steps: first, translate the circuit specifications into a state transition table
by modeling the system using finite state machines, and secondly, try to find an encoding of
the states such that the actual implementation is of minimum size. A detailed description
of the mathematical modeling of the VLSI problem to a BiQAP is given by Burkard, Çela
and Klinz [27]. Equivalently, the BiQAP can be stated as:

min
φ∈Sn

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

fijkldφ(i)φ(j)φ(k)φ(l),

where Sn denotes the set of all permutations of N = {1, 2, . . . , n}. All different formulations
for the QAP can be extended to the BiQAP, as well as most of the linearizations that have
appeared for the QAP.

Burkard et al. [27] compute lower bounds for the BiQAP derived from lower bounds
of the QAP. The computational results showed that these bounds are weak and deterio-
rate as the dimension of the problem increases. This observation suggests that branch and
bound methods will only be effective on very small instances. For larger instances, efficient
heuristics, that find good-quality approximate solutions, are needed. Several heuristics
for the BiQAP have been developed by Burkard and Çela [25], in particular determinis-
tic improvement methods and variants of simulated annealing and tabu search algorithms.
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Computational experiments on test problems of size up to n = 32, with known optimal
solutions (a test problem generator is presented in [27]), suggest that one version of simu-
lated annealing is best among those tested. The GRASP heuristic has also been applied to
the BiQAP by Mavridou, Pardalos, Pitsoulis and Resende [132], and produced the optimal
solution for all the test problems generated in [27].

13.3 The Quadratic Semi-Assignment Problem

In the quadratic semi-assignment problem (QSAP) we are given again two coefficient ma-
trices, a flow matrix F = (fij) and a distance matrix D = (dij), but in this case we have
n “objects” and m “locations”, n > m. We want to assing all objects to locations and at
least one object to each location so as to minimize the overall distance covered by the flow
of materials (or people) moving between different objects. Thus the objective function is
the same as that of the QAP, and the only different concerns the feasible solutions which
are not one-to-one mappings (or bijections) between the set of objects and locations but
arbitrary functions mapping the set of objects to the set of locations. Thus SQAP can be
formulated as follows:

min

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

fijdklxikxjl +

n∑

i,j=1

bijxij (58)

s.t.
n∑

j=1

xij = 1, i = 1, 2, . . . , n, (59)

xij ∈ {0, 1}, i, j = 1, 2, . . . , n. (60)

SQAP unifies some interesting combinatorial optimization problems like clustering , m-
coloring . In a clustering problem we are given n objects and a dissimilarity matrix F = (fij).
The goal is to find a partition of these objects into m classes so as to minimize the sum of
dissimilarities of objects belonging to the same class. Obviously this problem is a QSAP
with coefficient matrices F and D, where D is an m×m identity matrix. In the m-coloring
problem we are given a graph with n vertices and want to check whether its vertices can be
colored by m different colors such that each two vertices which are joined by an edge receive
different colors. This problem can be modeled as a SQAP with F equal to the adjacency
matrix of the given graph and D the m×m identity matrix. The m-coloring has an answer
“yes” if and only if the above SQAP has optimal value equal to 0. Practical applications
of the SQAP include distributed computing [169] and scheduling [45].

SQAP was originally introduced by Greenberg [85]. As pointed out by Malucelli [128]
this problem is NP-hard. Milis and Magirou [134] propose a Lagrangean relaxation al-
gorithm for this problem, and show that similarly as for for the QAP, it is very hard to
provide optimal solutions even for SQAPs of small size. Lower bounds for the SQAP have
been provided by Malucelli and Pretolani [129], and polynomially solvable special cases
have been discussed by Malucelli [128].

13.4 Other Problems Which Can Be Formulated as QAPs

There are a number of other well known combinatorial optimization problems which can
be formulated as QAPs with specific coefficient matrices. Of course, since QAP is not a
well tractable problem, it does not make sense to use algorithms developed for the QAP
to solve these other problems. All known solution methods for the QAP are far inferior
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compared to any of the specialized algorithms developed for solving these problems. How-
ever, the relationship between the QAP and these problems might be of benefit for a better
understanding of the QAP and its inherent complexity.

Graph Partitioning and Maximum Clique

Two well studied NP-hard combinatorial optimization problems which are special cases
of the QAP, are the graph partitioning problem (GPP) and the maximum clique problem
(MCP). In GP we are given an (edge) weighted graph G = (V,E) with n vertices and a
number k which divides n. We want to partition the set V into k sets of equal cardinality
such that the total weight of the edges cut by the partition is minimized. This problem can
be formulated as a QAP with distance matrix D equal to the weighted adjacency matrix of
G, and flow matrix F obtained by multiplying with −1 the adjacency matrix of the union
of k disjoint complete subgraphs with n/k vertices each. For more informations on graph
partitioning problems the reader is referred to Lengauer [120].

In the maximum clique problem we are again given a graph G = (V,E) with n vertices
and wish to find the maximum k ≤ n such that there exists a subset V1 ⊆ V which induces
a clique in G, i.e. all vertices of V1 are connected by edges of G. In this case consider
a QAP with distance matrix D equal to the adjacency matrix of G and flow matrix F
given as adjacency matrix of a graph consisting of a clique of size k and n − k isolated
vertices, multiplied by −1. A clique of size k in G exists only if the optimal value of the
corresponding QAP is −k2. For a review on the maximum clique problem the reader is
referred to [151].

The Traveling Salesman Problem

In the traveling salesman problem (TSP) we are given a set of cities and the pairwise
distances between them, and our task is to find a tour which visits each city exactly once
and has minimal length. Let the set of integers N = {1, 2, . . . , n} represent the n cities and
let the symmetric n×n matrix D = (dij) represent the distances between the cities, where
dij is the distance between city i and city j (dii = 0 ∀i = 1, 2, . . . , n). The TSP can be
formulated as

min

n−1∑

i=1

dφ(i)φ(i+1) + dφ(n)φ(1) (61)

s.t. φ ∈ Sn.

The TSP can be formulated as a QAP with the given distance matrix and a flow matrix F
being equal to the adjacency matrix of a cycle on n vertices.

The traveling salesman problem (TSP) is a notorious NP-hard combinatorial optimiza-
tion problem. Among the abounding literature on the TSP we select the book edited by
Lawler, Lenstra, Rinnooy Kan and Schmoys [119] as a comprehensive reference.

The linear arrangement problem

In the linear arrangement problem we are given a graph G = (V,E) and wish to place its
vertices at the points 1, 2, . . ., n on the line so as to minimize the sum of pairwise distances
between vertices of G which are joined by some edge. If we consider the more general
version of weighted graphs than we obtain the backboard wiring problem (see Section 1).



REFERENCES 59

This is an NP-hard problem as mentioned by Garey and Johnson [73]. It can be formulated
as a QAP with distance matrix the (weighted) adjacency matrix of the given graph, and
flow matrix F = (fij) given by fij = |i− j|, for all i, j.

The minimum weight feedback arc set problem

In the minimum weight feedback arc set problem (FASP) a weighted digraph G = (V,E)
with vertex set V and arc set E is given. The goal is to remove a set of arcs from E with
minimum overall weight, such that all directed cycles, so-called dicycles, in G are destroyed
and an acyclic directed subgraph remains. Clearly, the minimum weight feedback arc set
problem is equivalent to the problem of finding an acyclic subgraph of G with maximum
weight. The unweighted version of the FASP, that is a FASP where the edge weights of
the underlying digraph equal 0 or 1, is called the acyclic subdigraph problem and is treated
extensively by Jünger [99].

An interesting application of the FASP is the so-called triangulation of input-output tables
which arises along with input-output analysis in economics used to forecast the development
of industries, see Leontief [121]. For details and a concrete description of the application of
triangulation results in economics the reader is referred to Conrad [54] and Reinelt [153].

Since the vertices of an acyclic subdigraph can be labeled topologically, i.e. such that in
each arc the label of its head is larger than that of its tail, the FASP can be formulated as a
QAP. The distance matrix of the QAP is the weighted adjacency matrix of G and the flow
matrix F = (fij) is a lower triangular matrix, i.e., fij = −1 if i ≤ j and fij = 0, otherwise.

The FASP is well known to be NP-hard (see Karp [107], Garey and Johnson [73]).

Packing problems in graphs

Another well known NP-hard problem which can be formulated as a QAP is the graph
packing problem cf. Bollobás [18]. In a graph packing problem we are given graphs G1 =
(V1, E1), G2 = (V2, E2) with n vertices each and edge sets E1 and E2. A permutation π of
{1, 2, . . . , n} is called a packing of G2 into G1, if (i, j) ∈ E1 implies (π(i), π(j)) 6∈ E2, for
1 ≤ i, j ≤ n. In other words, a packing of G2 into G1 is an embedding of the vertices of
G2 into the vertices of G1 such that no pair of edges coincide. The graph packing problem
consists of finding a packing of G2 into G1, if one exists, or proving that no packing exists.

The graph packing problem can be formulated as a QAP with distance matrix equal
to the adjacency matrix of G2 and flow matrix equal to the adjacency matrix of G1. A
packing of G2 into G1 exists if and only if the optimal value of this QAP is equal to 0. In
the positive case the optimal solution of the QAP determines a packing.

References

[1] E. H. L. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing, Wiley,
Chichester, 1989.

[2] E. Aarts and J. K. Lenstra, eds., Local Search in Combinatorial Optimization, Wiley,
Chichester, 1997.



60 REFERENCES

[3] W. P. Adams and T. A. Johnson, Improved linear programming-based lower bounds
for the quadratic assignment problem, in Quadratic Assignment and Related Prob-
lems, P. M. Pardalos and H. Wolkowicz, eds., DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science 16, 1994, 43–75, AMS, Providence, RI.

[4] W. P. Adams and H. D. Sherali, A tight linearization and an algorithm for zero-one
quadratic programming problems, Management Science 32, 1986, 1274–1290.

[5] W. P. Adams and H. D. Sherali, Linearization strategies for a class of zero-one mixed
integer programming problems, Operations Research 38, 1990, 217–226.

[6] R. K. Ahuja, J. B. Orlin, and A. Tivari, A greedy genetic algorithm for the quadratic
assignment problem, Working paper 3826-95, Sloan School of Management, MIT,
1995.

[7] S. Arora, A. Frieze, and H. Kaplan, A new rounding procedure for the assignment
problem with applications to dense graph arrangement problems, Proceedings of the
37-th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1996,
21–30.

[8] A. A. Assad, and W. Xu, On lower bounds for a class of quadratic 0-1 programs,
Operations Research Letters 4, 1985, 175–180.

[9] E. Balas and J. B. Mazzola, Quadratic 0-1 programming by a new linearization,
presented at the Joint ORSA/TIMS National Meeting, 1980, Washington D.C.

[10] E. Balas and J. B. Mazzola, Nonlinear programming: I. Linearization techniques,
Mathematical Programming 30, 1984, 1–21.

[11] E. Balas and J. B. Mazzola, Nonlinear programming: II. Dominance relations and
algorithms, Mathematical Programming 30, 1984, 22–45.

[12] A. I. Barvinok, Computational complexity of orbits in representations of symmetric
groups, Advances in Soviet Mathematics 9, 1992, 161–182.

[13] R. Battiti and G. Tecchiolli, The reactive tabu search, ORSA Journal on Computing
6, 1994, 126–140.

[14] M. S. Bazaraa and O. Kirca, Branch and bound based heuristics for solving the
quadratic assignment problem, Naval Research Logistics Quarterly 30, 1983, 287–
304.

[15] M. S. Bazaraa and H. D. Sherali, Benders’ partitioning scheme applied to a new
formulation of the quadratic assignment problem, Naval Research Logistics Quarterly
27, 1980, 29–41.

[16] M. S. Bazaraa and H. D. Sherali, On the use of exact and heuristic cutting plane
methods for the quadratic assignment problem, Journal of Operations Research So-
ciety 33, 1982, 991–1003.

[17] G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tucumán Rev.,
Ser. A, 1946, 147–151.

[18] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.



REFERENCES 61

[19] A. Bruengger, J. Clausen, A. Marzetta, and M. Perregaard, Joining forces in solving
large-scale quadratic assignment problems in parallel, in Proceedings of the 11-th
IEEE International Parallel Processing Symposium (IPPS), 1997, 418–427.

[20] E. S. Buffa, G. C. Armour, and T. E. Vollmann, Allocating facilities with CRAFT,
Harvard Business Review 42, 1962, 136–158.

[21] R. E. Burkard, Die Störungsmethode zur Lösung quadratischer Zuordnungsprobleme,
Operations Research Verfahren 16, 1973, 84–108.

[22] R. E. Burkard, Quadratische Bottleneckprobleme, Operations Research Verfahren 18,
1974, 26–41.

[23] R. E. Burkard, Locations with spatial interactions: the quadratic assignment problem,
in Discrete Location Theory, P. B. Mirchandani and R. L. Francis, eds., Wiley, 1991.
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[27] R. E. Burkard, E. Çela, and B. Klinz, On the biquadratic assignment problem, in
Quadratic Assignment and Related Problems, P. M. Pardalos and H. Wolkowicz,
eds., DIMACS Series on Discrete Mathematics and Theoretical Computer Science
16, 1994, 117–146, AMS, Providence, RI.
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[64] T. Espersen, S. E. Karisch, E. Çela, and J. Clausen, QAPPACK- a JAVA package for
solving quadratic assignment problems, working paper, Department of Mathematical
Modelling, Technical University of Denmark, Denmark, and Institute of Mathematics,
Technical University Graz, Austria.

[65] T. A. Feo, M. G. C. Resende, and S. H. Smith, A greedy randomized adaptive search
procedure for the maximum independent set, Technical report, AT&T Bell Labora-
tories, Murray Hill, NJ, 1989. To appear in Operations Research.

[66] T. A. Feo and M. G. C. Resende, Greedy randomized adaptive search procedures,
Journal of Global Optimization 6, 1995, 109–133.

[67] G. Finke, R. E. Burkard, and F. Rendl, Quadratic assignment problems, Annals of
Discrete Mathematics 31, 1987, 61–82.

[68] C. Fleurent and J. Ferland, Genetic hybrids for the quadratic assignment problem,
in Quadratic Assignment and Related Problems, P. Pardalos and H. Wolkowicz, eds.,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 16, 1994,
173–187, AMS, Providence, RI.

[69] J. B. G. Frenk, M. van Houweninge, and A. H. G. Rinnooy Kan, Asymptotic prop-
erties of the quadratic assignment problem, Mathematics of Operations Research 10,
1985, 100–116.

[70] A. M. Frieze and J. Yadegar, On the quadratic assignment problem, Discrete Applied
Mathematics 5, 1983, 89–98.

[71] A. M. Frieze, J. Yadegar, S. El-Horbaty, and D. Parkinson, Algorithms for assignment
problems on an array processor, Parallel Computing 11, 1989, 151–162.

[72] L. M. Gambardella, E. D. Taillard, and M. Dorigo, Ant colonies for the QAP, Techni-
cal Report IDSIA-4-97, 1997, Istituto dalle Molle Di Studi sull’ Intelligenza Artificiale,
Lugano, Switzerland.

[73] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory
of NP-completeness, W. H. Freeman and Company, New York, 1979.

[74] J. W. Gavett and N. V. Plyter, The optimal assignment of facilities to locations by
branch and bound, Operations Research 14, 1966, 210–232.

[75] A. M. Geoffrion, Lagrangean relaxation and its uses in integer programming, Math-
ematical Programming Study 2, 1974, 82–114.

[76] A. M. Geoffrion and G. W. Graves, Scheduling parallel production lines with
changeover costs: Practical applications of a quadratic assignment/LP approach. Op-
erations Research 24, 1976, 595–610.

[77] P. C. Gilmore, Optimal and suboptimal algorithms for the quadratic assignment
problem, SIAM Journal on Applied Mathematics 10, 1962, 305–313.

[78] F. Glover, Improved linear integer programming formulations of nonlinear integer
problems, Management Science 22, 1975, 455–460.

[79] F. Glover, Tabu search - Part I, ORSA Journal on Computing 1, 1989, 190–206.



REFERENCES 65

[80] F. Glover, Tabu search - Part II, ORSA Journal on Computing 2, 1989, 4–32.

[81] F. Glover, M. Laguna, E. Taillard, and D. de Werra, eds., Tabu search, Annals of
Operations Research 41, 1993.

[82] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming, Journal of the
ACM 42, 1995, 1115–1145.

[83] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Wokingham, England, 1989.

[84] A. Graham, Kronecker Products and Matrix Calculus with Applications, Halsted
Press, Toronto, 1981.

[85] H. Greenberg, A quadratic assignment problem without column constraints, Naval
Research Logistic Quarterly 16, 1969, 417–422.

[86] S. W. Hadley, Continuous Optimization Approaches for the Quadratic Assignment
Problem, PhD thesis, University of Waterloo, Ontario, Canada, 1989.

[87] S. W. Hadley, F. Rendl, and H. Wolkowicz, Bounds for the quadratic assignment
problem using continuous optimization techniques, Proceedings of the 1-st Integer
Programming and Combinatorial Optimization Conference (IPCO), University of Wa-
terloo Press, 1990, 237–248.

[88] S. W. Hadley, F. Rendl, and H. Wolkowicz, A new lower bound via projection for
the quadratic assignment problem, Mathematics of Operations Research 17, 1992,
727–739.

[89] S. W. Hadley, F. Rendl, and H. Wolkowicz, Nonsymmetric quadratic assignment prob-
lems and the Hoffman-Wielandt inequality, Linear Algebra and its Applications 58,
1992, 109–124.

[90] P. Hahn and T. Grant, Lower bounds for the quadratic assignment problem based
upon a dual formulation, to appear in Operations Research.

[91] P. Hahn, T. Grant, and N. Hall, Solution of the quadratic assignment problem using
the Hungarian method, to appear in European Journal of Operational Research.

[92] G. G. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University
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[165] A. Schäffer and M. Yannakakis, Simple local search problems that are hard to solve,
SIAM Journal on Computing 20, 1991, 56–87.

[166] J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem, ORSA
Journal on Computing 2, 1990, 33–45.

[167] J. Skorin-Kapov, Extensions of tabu search adaptation to the quadratic assignment
problem, to appear in Computers and Operations Research.

[168] L. Steinberg, The backboard wiring problem: A placement algorithm, SIAM Re-
view 3, 1961, 37–50.

[169] H. S. Stone, Multiprocessor scheduling with the aid of network flow algorithms, IEEE
Transactions on Software Engineering 3, 1977, 85–93.

[170] W. Szpankowski, Combinatorial optimization problems for which almost every algo-
rithm is asymptotically optimal!, Optimization 33, 1995, 359–367.

[171] E. Taillard, Robust tabu search for the quadratic assignment problem, Parallel Com-
puting 17, 1991, 443–455.

[172] D. M. Tate and A. E. Smith, A genetic approach to the quadratic assignment problem,
Computers and Operations Research 22, 1995, 73–83.

[173] I. Ugi, J. Bauer, J. Friedrich, J. Gasteiger, C. Jochum, and W. Schubert, Neue An-
wendungsgebiete für Computer in der Chemie, Angewandte Chemie 91, 1979, 99–111.

[174] D. H. West, Algorithm 608: Approximate solution of the quadratic assignment prob-
lem, ACM Transactions on Mathematical Software 9, 1983, 461–466.

[175] M. R. Wilhelm and T. L. Ward, Solving quadratic assignment problems by simulated
annealing, IEEE Transactions 19, 1987, 107–119.

[176] Q. Zhao, Semidefinite Programming for Assignment and Partitioning Problems, Ph.D.
Thesis, University of Waterloo, Ontario, Canada, 1996.



REFERENCES 71

[177] Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz, Semidefinite relaxations for
the quadratic assignment problem, Journal of Combinatorial Optimization 2, 1998,
71–109.


