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Abstract

In this paper we consider the constant rank unconstrained quadratic 0-1 op-
timization problem, CR-QPO01 for short. This problem consists in minimizing
the quadratic function (z, Az) + (¢, z) over the set {0,1}" where c is a vector
in R" and A is a symmetric real n x n matrix of constant rank r.

We first present a pseudo-polynomial algorithm for solving the problem CR-
QPO01, which is known to be NP-hard already for r = 1. We then derive two
new classes of special cases of the CR-QP01 which can be solved in polynomial
time. These classes result from further restrictions on the matrix A. Finally
we compare our algorithm with the recent algorithm of Allemand et al. [1] for
the CR-QPO01 with negative semidefinite A and extend the range of applica-
bility of the latter algorithm. It turns out that neither of the two algorithms
dominates the other with respect to the class of instances which can be solved
in polynomial time.
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Résumé

Dans cet article nous considérons le probleme de minimisation quadratique 0—1
non-contraint avec une matrice de rang constant, noté CR-QPO01. Ce probléeme
consiste & minimiser la fonction quadratique (z, Az) + (c,z) sur l'ensemble
{0,1}™ ol c est un vecteur de R" et A est une matrice symétrique réélle de
dimension n X n et de rang constant r.

Nous présentons d’abord un algorithme pseudo-polynomial pour résoudre le
probleme CR-QPO01, qui est connu pour étre NP-difficile déja pour r = 1. Nous
dérivons ensuite deux nouvelles classes de cas spéciaux de CR-QP01 qui peu-
vent étre résolues en temps polynomial. Ces classes s’obtiennent en ajoutant
des restrictions supplémentaires sur la matrice A. Finalement nous comparons
notre algorithme avec le récent algorithme de Allemand et al. [1] pour CR-
QPO1 lorsque A est une matrice semi-définie négative et nous étendons le do-
maine d’application de ce dernier algorithme. Nous montrons qu’aucun des
deux algorithmes ne domine 'autre par rapport aux classes d’instances qui
peuvent étre résolues en temps polynomial.

Mots Clés: programmation quadratique 0-1, cas spécial, complexité, mini-
mum local, matrice de rang constant.



1 Introduction

Problem statement. In this paper we consider a special case of the unconstrained
0-1 quadratic programming problem, QP01 for short. The QP01 can be stated as
follows:

i A 1
:rerﬁll,ll]}"<x’ z) + (c,x) (1)

where ¢ is a vector in R", A is a symmetric real n X n matrix and (-, -) denotes the

Euclidean inner product in R*. Note that since z? = x; for z; € {0,1}, one could

1
assume in problem (1) that there is no linear term, i.e., that ¢ = 0. Applying this
transformation, however, changes the diagonal elements of A. Since this paper is con-
cerned with special cases of the QP01 which result from specially structured matrices,
we prefer to work with the representation (1). Problem QP01 has been investigated
in numerous papers and has many applications, see e.g. Boros and Hammer [4] and

the references cited therein.

It is well-known that QP01 is strongly NP-hard; for example, it is equivalent
to the maximum cut problem (MC) which is well-known to belong to the class of
strongly NP-hard problems (for the equivalence see Hammer [14], for the complexity
of the MC problem see Garey and Johnson [13]).

The topic of this paper is the constant rank unconstrained quadratic 0-1 pro-
gramming problem, CR-QPO01 for short, which arises as special case of the QP01 by
restricting the matrix A to the class of matrices with constant rank r. This restric-
tion remains NP-hard even for the special case of rank 1 matrices (for details, see
Section 2).

Related results. In the literature mainly two types of special cases of the QP01
have been investigated. The first type typically results from putting restrictions on
the graph G(A) which results by introducing an edge {i,j} for a;; # 0. There is a
close relationship between this class of special cases of the QP01 and special cases
of the maximum cut problem for special graph classes. An example of this first
type of special cases is the case which results from graphs G(A) with bounded tree-
width. This special case can be solved in polynomial time (see Crama, Hansen and
Jaumard [7] for a treatment in the more general setting of pseudo-Boolean programs),
and subsumes the special cases where the graph G(A) is series-parallel (Barahona [2])
or where G(A) is a binary tree (Pardalos and Jha [20]). There exist quite a number of
other polynomially solvable special cases of the QP01 which result from restrictions



on the graph G(A). As this paper deals with a different class of special cases, we
refrain from giving further details.

The second class of special cases arises from putting restrictions on the matrix
A = (a;j). The best known example of this type is the case of nonpositive matrices
A, i.e., more precisely, a;; < 0 for 1 < i < 57 < n. This case can be solved by
reduction to a maximum flow problem in a network with O(n?) nodes (see Picard
and Ratcliff [21]). The CR-QPO01 belongs to this second class of special cases. The
following special cases of the CR-QPO01 have been treated in the literature.

e A is of rank » = 1 and there is no linear term, i.e., ¢ = 0. This case can be
solved in a straightforward way by inspection.

e A has at most one positive and at most one negative eigenvalue and the matrix
(A, c) is of rank 2. In this case, the objective function f in (1) can be written
as product of two linear functions. This special case of the CR-QPO01 is still
NP-hard, see Hammer et al. [15]. In [15] an O(nlogn) algorithm is proposed for
solving the continuous relaxation, and then cases are characterized where the

optimal solution of the relaxation is 0-1, i.e., constitutes an optimal solution of
the CR-QPO1.

e A is negative semidefinite and there is no linear term, i.e., ¢ = 0. For this case
Allemand, Fukuda, Liebling and Steiner [1] proposed an algorithm of complexity
O(n™=") for the case 7 > 3 and O(n?) for r = 2. At the end of this paper we will
show that their algorithm actually solves a broader class of problems, namely
all quadratic 0-1 problems with a matrix of rank r that have the property that
all optimal solutions of the continuous relaxation are integral.

Our results. Our main result is the identification of the following two new classes
of polynomially solvable cases of the CR-QPO01:

(C1) This class results from a hypergraph H = (Vi, Ey) with bounded edge size.
We require that ), . a;; < 0 holds for all edges F' € Ey and that the stable
sets of H can be enumerated in polynomial time (for details see Section 4).

(C2) This class results from an undirected graph G = (V, E), the edges of which are
partitioned into two classes E~(G) and E*(G). We require that

ai; + a;; — 2a;,; <0 for all {i,j} € E~(G)
a;; + a;j + 2&2‘]' <0 for all {Z,j} - E+(G)



holds. Moreover, the following two properties have to be fulfilled: (i) The
number of maximal stable sets in the graph (V, E*(G)) is polynomial in n,
and (ii) for each maximal stable set S and for each possible orientation O of
the edges in the set E~(G[S]) = {{i,j} € E~(G) and i,j € S}, the number
of extensions of the partial order on S induced by O to a total order on S is
polynomial in n (for further details and definitions see Sections 3.7 and 5).

Organization of the paper. The paper is organized as follows. In Section 2,
we discuss the complexity of problem CR-QP01 and present a pseudopolynomial
algorithm for its solution. In Section 3, we present the general framework of our
approach. Section 4 deals with the special case C1 and Section 5 with the special case
C2. In Section 6, we compare our approach with the approach of Allemand, Fukuda,
Liebling and Steiner [1]. More specifically, we show that the range of applicability of
the approach of [1] can be extended. We furthermore provide examples which show
that neither of the two approaches dominates the other in terms of the classes of
instances of the CR-QPO01 that can be solved in polynomial time. The paper is closed
with a short conclusion in Section 7.

2 Complexity aspects of the CR-QPO01

In this section, we are going to investigate the complexity of the CR-QPO1 in some
more detail. In particular, we will present a pseudopolynomial time algorithm for CR-
QPO1. This shows that, in contrast to the general QP01, the special case CR-QP01
with a matrix A of constant rank is not NP-hard in the strong sense.

For the rest of the paper we will make use of the following alternative repre-
sentation of problem CR-QPO1:

d
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where d is a constant, ¢ and u',...,u? are given vectors in R”, and \i,..., A4,

Bi,..., B4 are given reals. Note that we could always set g, = 0 for £ = 1,...,d,
because all linear terms can be collected in the term (¢, x) and additive constants do
not play a role in the minimization of f. The reason why we, nevertheless, use the
more general formulation is that the choice of the vector ¢ and of the numbers 3,
might have an influence on the running times of our algorithms (for further details
see the comments below).



From linear algebra it is known that any quadratic function can be always
represented in the form (2). One method to arrive at such a representation is to
determine a spectral decomposition of A, i.e., to use the non-zero eigenvalues of A
as values )\; and the eigenvectors as vectors u/, j = 1,...,d where d = r (recall that
r denotes the rank of A). Moreover, all 5, are set to zero. This approach has the
disadvantage that it might lead to irrational numbers in the representation (2), even
in the case where all entries of A and ¢ are rational. If a rational representation
is needed, one can compute a so-called LDU decomposition of A which leads in
the symmetric case to a decomposition of A as product LDL" where L is a lower
triangular matrix and D is a diagonal matrix with rank d = r (see text books on
linear algebra, e.g. [12], for details).

Since the representation of a quadratic function in the form (2) is not unique,
this poses the question of finding the best such representation. Different representa-
tions can have different values for d and ¢, which will influence the running time of
our algorithms. For example, by choosing the numbers S, in a clever way, it might
be possible to arrive at ¢ = 0, which, as we will see later, leads to algorithms with
lower complexity for the classes considered in this paper. Similarly, a clever choice of
¢ might allow to arrive at a quadratic part with rank d < r. We will not deal with
the question of finding the representation which results in the smallest running times
of our algorithms in this paper. This is a problem in its own right.

It is well-known and easy to see that problem CR-QPO01 is NP-hard already for
matrices of rank 1. If the representation (2) is used, one can even moreover assume
that ¢ = 0. To see this, consider the well-known SUBSET SUM problem, see [13],
which, given nonnegative integers sq,..., s, and an integral target value B, asks for
the existence of a subset I C {1,...,n} such that )., s; = B. This question has
the answer yes if and only if the optimal value of the instance of the CR-QP01 given
by min (37, sz — B)? is 0.

z€{0,1}"

The following result shows that problem CR-QPO01 can be solved in pseudo-
polynomial time for rational data.

Proposition 1 Let an instance of problem (2) be given with ¢,u,...,u® € Z",
Biy....Ba € Z and A\i,...,\g € Q. Let U = 2maxi—i,_ny=1..a{|ull,|ci|}. Then
the given instance can be solved in O (dU?¥+2n?¥+3) time.

To prove Proposition 1, we need the following lemma.



Lemma 1 Let K = {k;;} be a m x n integral matriz, and b an integer vector of
dimension m. The problem of deciding whether there exists a vector x € {0,1}" such
that Kz = b can be solved in O (mn™*'s™) time where k = 2 max {\k29|}

, seensTl

Proof. The proof of this lemma is based on a modification of the dynamic pro-
gramming approach of Papadimitriou [19] for the integer linear feasibility problem.
Let k@ denote the i-th column of the matrix K, i = 1,...,n. At the j-th stage
of the dynamic program, we compute the set W; of vectors w that can be writ-

ten as w = Zxk with z; € {0,1}, i« = 1,...,j. The cardinality of the set

W; is bounded from above by (jk+1)". Hence the set W, can be computed in
(mz (iR 4 1) ) = O (mn™"'k™) time. To answer the feasibility question,

it suffices to check if the set W, contains the vector b, which can also be done in
O (mn™ k™) time. "

Proof of Proposition 1. For notational convenience, set u° = ¢. Due to the
definition of U we have, =2 < (uf,z) < 2 for all ¢ =0,...,d and = € {0,1}". Let

nlJ nU} d+

s . We associate with v

v = (vg, ...,vq) be an integral vector in the box [—
the following parametrized minimization problem

d
Min Gug,00(#) = vo + D A (B + v0)* (3)
(=1

ot (uf, z) = vy (=0,....d
o z; € {0,1} i=1,...,n.

For each choice of v, the set of constraints of the corresponding problem (3) de-
fines a feasibility problem which can be solved in O (dnd+2Ud+1) time applying the
approach from Lemma 1. The optimal value of problem (2) is the minimum of

d
vo+ Y. A (Be+ vg)2 over all vectors v = (vy,...,vq) which correspond to a feasible

problem. There are (nU +1)™" = O ((nU)™1) vectors (vo, . .., vq) to test, hence the
claimed result follows. .

3 General algorithmic framework

In this section we present the general framework of our approach. In the two subse-
quent sections we will discuss how polynomial time algorithms can be obtained for

7



the special cases C1 and C2 introduced in the introduction.

In Section 3.1 we introduce some key notations for the generic algorithmic
approach which will be sketched in Section 3.2. The generic algorithm consists of
three steps. We propose two variants for performing the first step, which are are
presented in Sections 3.3 and 3.4, respectively. The second and third steps of the
algorithm are addressed in Sections 3.5 and 3.6, respectively. In Section 3.7, we
introduce some graph theoretical definitions that will be needed in the remainder of
this paper.

3.1 Neighborhoods and local minima

A key notion needed in this section is the notion of a neighborhood. The function
N which maps = € {0,1}" to the set N (z) C {0,1}"\ {x} is called a neighborhood
function, or neighborhood for short. The members of the set A/ (x) are called neighbors
of z. Note that we allow N (z) = 0, i.e., x has no neighbors.

z € {0,1}" is said to be a local minimum of (2) with respect to the neighbor-
hood function A if f(zZ) < f(x) holds for all x € N'(z). & € {0,1}" is said to be a
global minimum of (2) if f(z) < f(z) holds for all z € {0,1}".

In the sequel it will be more convenient to use the following alternative repre-
sentation of neighborhood functions: For x € {0,1}" and a subset F of {1,...,n}, let
2¥" denote the vector which results from 2 by flipping the values of the components
of x corresponding to indices in F, i.e.,

; 1=1,...,n.

p [1—m; ifieF
i T 4 ifigF

Clearly, to each neighborhood function A/, we can associate a function F such that
N(z) = {zF" . F € F(x)} holds for all z € {0,1}". By a slight abuse of notation,
we will in the following also refer to F as a neighborhood function. We denote by G
the union of the sets F(z) over all x € {0,1}", i.e., G = ,cq01y» F(x). We assume
that the sets in G are ordered in some arbitrary way, say G = {Fy, F, ..., F,} where
9 =19l

Both specific neighborhood functions which will be used in this paper (in
Sections 4 and 5, respectively) are symmetric, i.e. fulfill the property z € N (2') <
z' € N(x). Moreover we assume that there exists a constant p such that |F| < p for
all F e g.



We are now going to characterize local minima with respect to a given neigh-
borhood function F.

Proposition 2 x is a local minimum with respect to the neighborhood function F if
and only if the following property holds for all F € F(z):

2(2%‘ - 1) (@ + QZ Aeus(Be + <Uéa$>)) - Z (22; — 1)(2z; — 1)az; <0 (4)

jEF =1 ijEF

d
Proof. Compute the difference A = f(z) — f(z") and note that éz Agujul = a;; for
=1
all 7,5 = 1,...,n. It is then easy to see that the condition A < 0 is equivalent to the
condition (4). 1

We are now going to reformulate the conditions (4). Our goal is to arrive at a
polyhedral description. For each set F' € G we choose a value dr such that

Z (2z; — 1)(2z; — 1)a;; < 0F for all z € {0,1}". (5)
ijeF

Let 6 = (0, 0m,, ..., 0r,). To each z € {0,1}" we associate a polyhedron P, ; C R¢
which contains all y € R? such that

22 by, <Z(2:1:j - 1)u§> y < Op — Z(ij —1)¢; forall F e F(x). (6)

(=1 jEF

Proposition 2 implies that for all local minima x with the property F(z) # ()
(i.e. z has at least one neighbor) the polyhedron P, s C R? is nonempty (to see that,
set y := By + (u,x) for £ =1,...,d). In order to write the inequalities defining the
polyhedron P, s in a more succinct way, we introduce the terms r;(y) defined by

d
Tj(y):@+2ZAeU§ye j=1,...,n. (7)
(=1

Then P, 5 can be defined as the set of all y € R? such that for all F' € F(x) we have

> ;= Drjy) < b (8)

jeF



3.2 A generic algorithm

In this section we are going to propose a high-level description of a generic algorithm
A to solve the CR-QPO01, stated in the form (2). In subsequent parts of Section 3
we will give more details on how the different steps of the generic algorithm A can
be performed. Further specializations result from the choice of specific neighborhood
functions F in Sections 4 and 5, where the special cases C1 and C2 are treated. We
note that algorithm A is inefficient for the general case of CR-QPO01. In Sections 4
and 5, respectively, we will show how A turns into a polynomial time algorithm for
the special cases C1 and C2, respectively.

Generic algorithm A

1. Construct a set Y with the property that ¥ contains at least one point y € P, 5
for all local minima z with F(z) # 0.

2. For each y € Y, construct the set X(y) = {z € {0,1}" : y € P, s}.

3. Compute f(z) for all x € X(V) =,y X(y) and for all z € {0,1}" such that
F(x) = 0. Let z* be a point with minimal objective function value among the
tested points. Then x* constitutes an optimal solution of problem CR-QPO1.

Clearly the choice of § has a strong influence on the effectiveness of algorithm
A. TIf § is badly chosen, then the cardinality of the sets X (y) will be too large to
allow an efficient algorithm (recall that in the final step of A an exhaustive search is
done over the union of all sets X (y) for y € V). Observe that } . (22; — 1)r;(y) =
— > er(22] —1)r;(y) holds for F' € F(x). This motivates to choose dr such that, if
possible, not both z and its corresponding neighbor ¥ fulfill the inequality (8). This
will help in achieving our goal to keep the cardinalities of the sets X (y) sufficiently
small. In the following we will make use of the following two different strategies to
reach this goal:

S1 Choose dr < 0 for all F € G.

S2 In the case ¢ = 0, there exists the following alternative choice: Set i = 0 for all
F € G. This choice leads to an algorithm with improved running time as we will
see later on, but it makes only sense to apply it when . . (2z; — 1)r;(y) # 0
holds for a sufficiently large number of sets F' € G (for details see Section 3.4).
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In Section 3.3, we show how to construct the set Y when strategy S1 is used. In
Section 3.4, we show how to perturb the problem so that . .(2z; — 1)r;(y) # 0
holds for all z € {0,1}" and a sufficiently large number of sets F' € G. This enables
the use of strategy S2. The construction of the set X (y) is discussed in Section 3.5.

3.3 Construction of the set Y using strategy S1 to choose ¢

In this section strategy S1 will be applied to choose §. Let I" be the set of all constraints
of type (8). Note that a constraint in (8) is defined by a subset F' € G and a choice
for the values z;, j € F. Thus, we have [T < Y70, (?)QJ = O(n?) (recall that we
assume throughout that |F| < p for all F' € G). Suppose that the constraints in T
are ordered, i.e., I' = {y1, 72, ...,V }.

We now construct a tree 7 as follows: A node of 7 at level h is characterized by
h linearly independent constraints of type (8), say 74, . .., Vi, Where i; < iy < ... < .
The root of the tree (level 0) corresponds to an empty set of constraints. Given a
node N (94, ...,%;,) at level h, its sons are the nodes N(v;,, ..., Vi,,7:) for all possible
choices of 7 such that the following three properties are fulfilled: (i) i > iy, (ii) the h+1
constraints v;,, ..., Vi, are linearly independent and (iii) constraint ; is compatible
with the constraints v;,, . .., y;, with respect to the choice of the values of the variables
x; involved in these constraints. Clearly the maximal depth of the tree 7 is d. For
each leaf of the tree, we compute a point of the system of equations associated to the
leaf (these equations result if we require that the inequalities characterizing the leaf
are all fulfilled with equality). Note that, if a leaf is at level d, this system of equations
has a unique solution, which is not the case if the leaf is at a level < d. In the latter
case we simply choose one solution of the system of equations corresponding to the
leaf under consideration. The points computed in this way constitute the set Y.

It remains to be argued that the set Y constructed above contains at least
one point of each polyhedron P,;. Let x be fixed and consider a face f of the
polyhedron P, s with smallest dimension d — k (if P, s has extreme points, f will be
an extreme point). This face f is characterized by k linearly independent constraints
of type (8) which are satisfied at equality, say, v;,,...,7;, with j1 < jo <...ji. By
definition, the tree 7 contains the node N(vj,,..., 7). If N(vj,,...,7;) is a leaf,
then by construction of the algorithm, a point of the face f has been computed. If
N(7j,-...7,) is not a leaf, then it has a descendent N(7vj,, ..., %, Vjerrs-- - Vie)
which is a leaf: the point that was computed for this leaf is a point of our face f.

The number of leaves in the tree, and hence the cardinality of Y, is bounded
by (“;‘) (observe that the number of leaves is largest if there are no leaves at levels

11



< d). The amount of work that has to be done at each node (i.e., either checking
that the inequalities of that node are linearly independent, or finding a point of the
system) can be bounded by O(d?), hence the time complexity of computing Y is given

by O (i (5)d3> ~0 (dgeé r|f> = O (P ) = o(ITa) = O(d*n),

(=1

3.4 Implicit construction of the set Y using strategy S2 to
choose §

Strategy S2 will be applied when ¢ = 0. Recall that this means that we set dp = 0
for all F' € G. In that case P, is a polyhedral cone with origin Q@ = (0,...,0) for
all z € {0,1}". Note that the point € itself is not a useful point for inclusion into
the set Y because it belongs to all P, 5. (2 € Y would result in X (Y) = {0,1}", i.e.,
in an exhaustive search over all feasible solutions of CR-QPO01). Instead we consider
points that are close to Q. These points are on extreme rays (or faces of greater
dimension, if no extreme rays exist). Since these faces are of dimension > 1, their
number is O(|T|*") = O(n?@ ). This allows us to decrease the time complexity
of the procedure for computing Y in comparison to the case of strategy S1 where
O(|T'|%) points had to be investigated. The price we have to pay for this improvement
is that we have to cope with problems which result from degeneracy.

Each point y € Y results from a set of constraints of type (8) which have to be
fulfilled at equality. If for a point y and for sets F' € G that were not used to define
y, we have ZjeF(ij —1)r;(y) = 0, the point y might not be much more useful than
Q. This means that we have to take care of degeneracy. To that end, a symbolic
perturbation method, which is described next, will be applied.

3.4.1 A perturbation method

The perturbation method which we are going to propose is inspired by an approach
described in the book by Edelsbrunner [9, p. 185-191]. Let ¢ be the first prime
greater than d 4+ 1 and set (j,¢) = ¢?U+*Y=¢ Consider the perturbed vectors *
defined by

where ¢ is a small positive number. Note that this perturbation also affects the
problem in (2). We are actually solving a perturbed version which is obtained by

12



replacing the vectors u‘ by their perturbed versions u¢, ¢ = 1,...,d. Let ]31,,0 be the
perturbed version of P, . The polyhedron P,  contains all y € R which fulfill

Z(ij - 1)r(y) <0 for all F € F(x) (9)

JEF

where 7(y) = 2324 Atiby, for j=1,...,n.

If we had to give a specific value to &, this value would probably have to be
exponentially small, which would threaten the polynomiality of our algorithm. It
turns out, however, that we can perform Step 1 of algorithm A in a modified way
such that it is not necessary to explicitly compute the candidate points y € Y. This
allows us to refrain from choosing a specific value for £. The key observation is that
it suffices to be able to determine the sign of the expressions on the left hand side
of the inequalities (9) defining the perturbed polyhedron P, . In Section 3.4.2, we
explain how to construct the systems defining the candidate points y € Y. In Section
3.4.3, we characterize the sets F' € G for which the expressions } . . (2z; — 1)7(y)
are non-zero. Section 3.4.4 explains how to determine the sign of the expressions
> jer(27;—1)75(y). Section 3.4.5 discusses when the perturbation method should be
used.

3.4.2 Implicit construction of the set Y

Consider again the tree T introduced in Section 3.3. In the rest of Section 3 we
will work with the perturbed problem. A given node of tree 7 at level h is thus
characterized by a system of equations

> @z -DFy)=0 p=1...h (10)

JEFy,

where F; € G for p=1,...,h and the values z;, j € Uuzl’...’h Fi,, are given.

Recall that in the process of constructing the tree 7 described in Section 3.3 we
repeatedly need to test a given set of inequalities of type (8) for linear independency.
Moreover, the explicit construction of the set Y requires that a system of equations
is solved. This approach cannot be followed if perturbation is used and no specific
value of ¢ is chosen. In the following we will demonstrate how these difficulties can
be circumvented.

13



Suppose we are given the system of equations (10). We associate with this
system the following simplified system of equations in the new variables z;:

Y z=0  p=1..h (11)

JEFy,

Obviously, the linear dependency of these equations implies the linear dependency of
the equations (10).

One of the problems with degeneracy is that there will be leaves of the tree T
at levels < d, which means that there does not exist a unique solution to the set of
equations which define the respective leaf. We are now going to demonstrate that by
adding > 1 suitably chosen additional constraints, the resulting system of equations
will always have a unique solution.

We start with discussing the case of a leaf at level h = d — 1. We augment the
system (11) by a normalization constraint of the form

Z iz = 1 (12)

JEFY,

where the set ;) C {1,...,n} and the coefficients o, j € F}, are chosen such that the
equations given by (11)—(12) are linearly independent (F}, does not need to belong to
G; a possible choice is Fy, = {jo} where jo ¢ U,_, , Fi, and aj, = 1, although this
has the disadvantage to require the fixation of an additional variable z; ). Consider
the system in the variables y, obtained by replacing z; by (2x; — 1)7;(y). We show
now that for e sufficiently small, this system has always a unique solution.

The practical importance of the subsequent proposition is that the linear in-
dependency of the system (11)-(12) does not depend on ¢ and can thus be checked
without choosing a specific value for ¢.

Proposition 3 Assume that the d equations in the variables z; given by (11)-(12)

are linearly independent. Then for any choice of the values x;,j € U £, and
u=0,...,d—1
for e sufficiently small, the system in the variables y, given by

> Q- =0 p=1,...,d-1

jEFt#
S ay(2; - DRy(y) = 1
JEFY,

14



has an unique solution.

Proof. Since the equations given by (11)—(12) in the variables z; are linearly indepen-
dent, this system of equations can be put in a triangular form, i.e., there exist numbers

vy fore =1,...,d,and k = 1,...,n, satisfying v;; =1 for i = 1,...,d and numbers
bi,i =1,...,d, such that the system (11)—(12) is equivalent to Y ,_.vyz;, = b; for
it = 1,...,d. The corresponding system in the variables y, has then the following
form:

d n
Z)\g (Z Z/Zk(QQZ‘]k — 1) (Uﬁk + 5¢(jk’e))) Yy = bi, 1= 1, Cey d.

(=1 k=i

Clearly the determinant of the coefficient matrix of this system is a polynomial in

d
. . . d Z '(ﬁ(]“l)
. This polynomial contains the term (H Nivii (2, — 1)) gi=1 (observe that a
i=1
cancellation of this term is not possible since due to the construction of the perturba-
tion there cannot be another term with the same power of ). Hence the polynomial
contains at least one non-zero term. Consequently, the determinant will be non-zero

for € sufficiently small, which implies the claim about the unique solvability. 1

The case where the level of the leaf under consideration is h < d —1 is reduced
to the case h = d — 1 by adding d — 1 — h additional equations of the form (10), but
with Fy , p = h+1,...,d — 1, possibly chosen outside G, such that the equations
ZjeFtu 2j =0, pu=1,...,d— 1 are linearly independent.

We are now prepared to summarize the procedure to construct the set Y
implicitly. We again build up the tree 7 described in Section 3.3, but there are two
essential differences. The first one relates to the fact that instead of computing the
members of the set Y explicitly, we will work with systems of equations which define
the points in Y. The second difference concerns the fact that the leaves of the tree
have a depth of < d — 1 (in contrast to < d in Section 3.3). In the following we
distinguish two cases: leaves at level d — 1 and leaves at levels < d — 1.

We start with the first case. A leaf at level d — 1 is characterized by d — 1
equalities of type (10). These equalities define a line L passing through the origin Q,
where () partitions L into two halflines. The addition of the normalization constraint
ZjeFtO a;j(2x;—1)7;(y) = 1 has the effect of selecting a point lying on one of these two
halflines. Since the line L is not necessarily lying completely inside the polyhedron
ﬁz,o (© might be an extreme point of ﬁz’g), we also need to select a point which is
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lying on the other halfline of L originating at €2. Such a point is obtained by adding
the normalization constraint ZjEFtO a;j(2x;—1)7;(y) = —1 to the system of equations
defining the line L. We end up with two systems of equations, representing two points
yl and y¥, one of which is guaranteed to belong to P,o. By including both points
into the set Y we are on the safe side.

The second case concerns leaves at levels h < d—1. In such a case, we first add
d — 1 — h artificial constraints as explained above. We end up with d — 1 equations
which are linearly independent. These equations again define a line L through the
origin, but in that case it is guaranteed that the line L lies completely inside of the
polyhedron P, o (which has no extreme points in this case). Thus it suffices to choose
arbitrarily one of the two halflines of L originating at €2 and to select a point on that
halfline. Such a point is defined by taking the d — 1 constraints defining the line L
and adding the normalization constraint ZjEFtO a;(2z; — 1)r;(y) = 1.

.From the discussion above it follows that the set Y, with which we end up,
will indeed have cardinality O(|T'|%7!), in contrast to O(|T'|?) in the case handled in
Section 3.3.

3.4.3 Characterizations of sets F with >, p(2x; — 1)1j(y) # 0

In this section we show that the proposed perturbation method eliminates the prob-
lems caused by degeneracy. Specifically, the perturbation guarantees that the number
of sets ' € G for which >, (22; — 1)7;(y) = 0 holds is sufficiently small. (Recall
that this property is required to end up with a set X (Y") of manageable size.)

The following two results characterize the sets F' with the desired property

2 jer (225 = D)T5(y) # 0.

Proposition 4 Let 3y be a point of Y which is implicitly defined by the system of

equations Zjept (2z;,—1)rj(y) =0 forp=1,...,d—1 augmented by a normalization
o

constraint which is not listed here. Let F,, C {1,...,n} (not necessarily in G). If

the equations ZjeFtﬂ zj = 0, p =1,...,d, are linearly independent, then we have
> (2z; = 1)75(y) # 0.
JEF,

Proof. The proof is similar to that of Proposition 3. We first write the system
ZjGFt 2j =0, p=1,...,d, as a triangular system, then replace the variables z; by
n

(22;—1) 20, M (u + e¥9) y, and consider the determinant of the resulting system
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in the variables y,. This determinant is again a polynomial in £ with at least one non-
zero term, hence the determinant is non-zero for ¢ sufficiently small. Therefore the
only solution of the system of d equations is the point 2 = (0,...,0). Since g is not
equal to €2 and satisfies the first d — 1 equations, § cannot satisfy the last equation
given by ZjEFtd(ij — 1)7;(y) = 0 which proves the claim. i

Recall that when determining a point y, we had to fix the values of some of
the ;. Denote by J, the set of indices j € {1,...,n} with the property that the
values z; have not been used to define y.

Corollary 1 For all F C J, and all x € {0,1}", we have Y, (2z; — 1)7;(y) # 0.

Proof. The assumption F' C J, implies that the equation Z]EF z; = 0 only involves
variables z; with indices j which are not appearing in the equations used to determine
y. Consequently Proposition 4 can be applied which yields the desired result. 1

3.4.4 Determination of the sign of ) . n(2x; — 1)7;(y)

Assume that the point y € Y is implicitly defined by the system

d
S| D @r -1 (w400 fyy=0  p=1,....d-1 (13)
=1 JEF,

d
S| D o(2m = 1) (uf+ YY) |y =1 (14)
=1 JEFY,

Let ' C J,. We now explain how to determine the sign of >, .(2z; — 1)7(y).

To simplify the notation, we set F}, = F' (recall, however, that F' does not nec-

essarily belong to G). By Cramer’s Rule, we have y, = (jiitt]\]g[[((;) for{ =1,...,d, where
M (e) denotes the coefficient matrix of the system of equations given by (13)—(14) and
M;(e) denotes the matrix obtained from M (g) by replacing the ¢-th column of M (¢)
by the column vector (0,...,0,1)". Note that det M(e) is non-zero by Proposition 3.

Let 1L, = As (ZjEFtk(zxj —1) (u + 5’*”“’”)) fork=0,....dand £ =1,... d.

We are interested in the sign of the expression ZjeFtd(2xj — 1)7;(y). This
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expression is equal to

d detﬂlg€
¥ = Z 2z — 1)75(y aneyé ané det M(2)

]GFtd

We now develop the determinant of the matrix M,(¢) with respect to its ¢-th column.
This leads to det M;(g) = (—1)%* det M} () where M} () is the matrix obtained from
M;(e) by deleting the ¢-th column and the last row. Hence

- ity det M (E) _ det M)
v=) (-1 T qet M(e) T d
= et M(e) et M(e)

where M"(e) is the matrix with elements n;,, k,¢ =1,...,d. Proceeding in a similar
way as in the proof of Proposition 3, it can be shown det M"(¢) is non-zero for &
sufficiently small. Since both det M(g) and det M"(¢) are polynomials in &, their
sign is determined by the sign of their first non-zero coefficient, starting with the
terms of smallest exponent. We explain in the following how to determine the sign
of det M"(g). The case of det M(e) is handled analogously. The exponents of ¢
in det M"(¢) are of the form >_ ;) s (j,0) = D2 pes ¢’4t4=t for all subsets S of

(Uuzl,...,d Ftu> x {1,...,d} with cardinality < d. Since p is an upper bound on |F|
for all F' € G, it follows that j can take at most pd distinct values which implies that
the expression ¢ (j,f) = (j + 1)d — ¢, (j,£) € S, can take at most pd* + d distinct
values. The number of possible values for the exponents of ¢ is therefore bounded by
22:1 (”d?’d). For each possible exponent w of &, the coefficient of £ is the sum of at
most d subdeterminants of M”(¢), and can thus be computed in O(d*) time. Since
d is a constant, the sign of 3. .(2z; — 1)7(y) can therefore be computed in O(1)
time (note, however, that the constants hidden in this asymptotic notation increase

rapidly with d and p).

3.4.5 Applicability of the perturbation method

In order to be able to apply the perturbation method, we must have

» a;<0  forall Feg (15)

1,j€F

for ¢ sufficiently small, where A is the perturbed matrix defined by @;; = Z?Zl )\gﬂfﬂf
for all 7, j. (Note that if an inequality in (15) were violated, it would not be possible
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to choose 6 = 0.) The condition (15) is guaranteed to hold for small values of ¢, only
when ZZ.JEF a;; < 0 holds for all F' € G.

We close the discussion of the perturbation approach by the remark that in
principle this approach can also be applied in the general case, i.e., ¢ # 0. The
candidate set Y can be computed in O(|T|?"!) time in the case when ¢ # 0, but
the number of indices ¢ such that ¢; # 0 is bounded by a constant. In that case,
we distinguish between polyhedra P, s that contain the origin €2, and polyhedra that
do not contain Q. For polyhedra that contain 2, we compute (implicitly) points on
faces of dimension > 1. For polyhedra that do not contain €2, we compute candidate
extreme points, but by restricting our attention to points that satisfy at equality at
least one inequality separating €. Since the number of these inequalities is bounded
by a constant, these candidate extreme points can also be computed in O(|T|¢7")
time.

Although the perturbation method can also be applied in the case ¢ # 0, it is
not recommendable to apply it for at least 3 reasons: removing the degeneracy results
in an increase of the cardinality of Y; the hidden constants in the complexity bound
increase when perturbation is used; and finally, perturbation may destroy a possible
symmetry in the objective function, implying that algorithm A cannot any longer be
used to obtain the set of all optimal solutions.

In the remaining part of this paper, we generally assume that the perturbation
method is used when ¢ = 0, and not used when ¢ # 0.

3.5 Construction of the set X(y)

In order to be able to handle the cases with and without application of the perturba-
tion method in a unified way, we introduce the expressions p;(y) for j =1,...,n and
y € Y, where p;(y) equals 7;(y) if perturbation is used and equals r;(y) otherwise.

Let y € Y be given explicitly or implicitly (by its set of defining equations).
In order to construct the set X (y) we need to compute the set of all z € {0,1}" such
that y € P, 5 (or its perturbed version ]31,0) This task amounts to finding all points
x € {0,1}" which satisfy

Z(ij —1)p(y) < ép for all F € F(x)

jEF
where 0 = 0 for all F' € G in the perturbed case.
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Our method for solving this task is largely dependent on the choice of the
neighborhood function F. We therefore postpone the further discussion of the com-
putation of the sets X (y) to Sections 4 and 5, where specific neighborhoods functions
for the cases C1 and C2 will be introduced.

3.6 Construction of the set of optimal solutions

Let X(YV)=| U X(y) | and X = X(Y)U {z : F(x) = 0}: the optimal solutions to
yey
problem (2) are obtained by evaluating the objective function f for all points of X,

and keeping the points of smallest value. The complexity of this phase is O(| X |nd).

Note that we can also construct the set of all local minima for the neighborhood
function F under consideration by testing all points in X and listing those which are
local minima. The running time of this approach is |X| times the time needed to
check if a given point is a local minimum with respect to F.

A word of caution is in order when perturbations are used. We then have no
guarantee to obtain all global optima, or all local minima, and will in general have to
be satisfied with a single global optimum.

3.7 Some graph theoretical definitions

The following definitions will be needed in the remainder of the paper (for further
details see e.g. Berge [3]).

A hypergraph H = (Viz, Ey) is defined by a set Vi of vertices and a collection
Ey of subsets of Vi called edges. For notational convenience assume Vi = {1,...,n}.
The size of an edge F' € Fy is the cardinality of F, i.e., |[F|. An edge of size 1 is
called a loop. Observe that a hypergraph H becomes a graph if all edges are of size
1 or 2. A hypergraph is said to be of bounded edge size if there exists a constant k
such that |F| <k for all F' € Ey.

Let H = (Vy, Eg) be a hypergraph and let W C V. The set W induces a
subhypergraph of H, the so-called induced subhypergraph H[W| = (W, Egmw,) with
vertex set IV and edge set Eypy which only contains those edges F' € Ey which
are subsets of W. As a special case the notion of a induced subgraph arises. Let
G = (V, E) be an undirected graph and W C V', then G[W] = (W, Ey) with Ey =
{{i,j} € E:i,j € W} is called the subgraph of G induced by the vertex set .
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A stable set or independent set of H = (Viy, E) is a subset W of Vi such that
no subset of W belongs to EFy. Note that a subset of a stable set is still a stable set.

Given a directed graph D = (V, Ep), we define the partial order < which is
induced by D on V' as follows: i < j, 4,5 € V if and only if (i,j) € Ep.

4 A polynomial time algorithm for special case C1

In this section, we consider the special case C1 of problem CR-QPO1 (cf. Section 1).
This case arises for matrices A of rank d which additionally satisfy the following

property

Y a;<0  forall F€Ey (16)

ijeF
where H = (Vy, Ey) is a hypergraph with |Vy| = n. Our main result is the following:
Theorem 1 Assume that the following conditions are satisfied:

(a) H is a hypergraph of bounded edge size.
(b) The largest stable set in H is of size O(logn)

(¢) The number of mazimal stable sets in H is polynomial in n.

Then the CR-QPO01 stated in the form (2) can be solved in polynomial time when
restricted to the class of matrices fulfilling property (16).

Theorem 1 will be proved in the course of this section.

4.1 Definition of the neighborhood function used for case C1

For dealing with case C1, we need a neighborhood function F. To define F we
proceed as follows. Let H = (Vg, Eg) be a hypergraph and let x € {0,1}. Let
Hf = H[V{¥] and HY = HI[V["], respectively, denote the subhypergraphs of H which
are induced by the vertex sets Vi and V{*, respectively, where V¥ = {i € Vi : z; = 0}
and Vi = {i € Vg : & = 1}. To each x € {0,1}" we now associate the set F(x)
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which defines the neighbors of = by taking F(z) to be the union of the edges of the
subhypergraphs HJ and HY. In other words, 2’ € {0,1}" is a neighbor of z if it can
be obtained from z by selecting an edge F' € Ey such that the components z;, 1 € F,
have the same value and then flipping the value of these components. Observe that

g = U:EG{U,I}" F(z) = Ep.

Let ¢ be chosen either according to strategy S1, i.e., such that Zi’jeF a;; < op <0
holds for all F' € G, or according to strategy S2, i.e., 6p = 0 for all F' € G (this
strategy is applied for ¢ = 0).

Using the neighborhood function F introduced above, the defining inequali-
ties (8) of the polyhedron P, s (or the inequalities (9) defining its perturbed version)
simplify to

> pily) < 6r for all F' € F(z) such that z; =1 foralli € F (17)
JjeEF
= pi(y) <dp  forall F € F(z) such that z; =0 forall i € F (18)

jEF

where again p;(y) equals 7;(y) or r;(y) depending on whether or not perturbation has
been applied (cf. Section 3.5).

4.2 Construction of the set X(y) for case C1

We assume that the set Y has already been computed (either explicitly or implicitly,
see Sections 3.3 and 3.4, respectively). In order to compute the set X (y) for a given
y € Y, we need to find all points € {0,1}" such that y € P,s (cf. Section 3.2),
which in our case means the set of all z € {0, 1}" such that the system of inequalities
given by (17)—(18) is satisfied. Recall that in the course of computing y, the values
of some z; have already been fixed to either 0 or 1. Let .J, again denote the set
of the indices j € {1,...,n} for which the value of ; has not yet been fixed. For
jgeA{L,...,n}\ Jy, let :1:? denote the already fixed value of the j-th component of
x. Clearly, we do not have any freedom in choosing the values xi’ Thus the task of
computing the set X (y) amounts to finding all possibilities for choosing the values of
x; for j € J, such that y belongs to P, ;.

Let H[.J,| denote the subhypergraph of H which is induced by the vertex set
Jy € Vg. If © € {0,1}" satisfies the system of inequalities (17)-(18), then it also
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satisfies the following set of conditions

> pily) <0 forall F € Epyy, such that z; =1 for alli € F (19)
icF
Zpi(y) >0 for all F € Epy;,) such that 2; = 0 for all i € F'. (20)
ieF

To prove this claim, we distinguish two cases depending on which strategy has been
used to choose 0. If S1 has been applied, we have dp < 0 for all F' € G, so the claim
follows directly from (17)—(18). If S2 has been applied, inequality (20) follows from
Corollary 1.

Consequently, the task to compute X (y) reduces to the search for all partitions
(Oy, Z,) of the set .J, such that

> pily) <0forall F € By, and Y pi(y) >0 forall F € Eyz,). (21)

ieF 1€F

Such partitions will be called feasible partitions of J,. Each feasible partition leads
to a point x € X (y) in the following way:

0 forjeZz,
z;={ 1 forjeo, (22)
xy  forj e J,
(The names O, and Z, have been chosen to reflect that x; is set to one for j € O,,
and to zero for j € Z,,.)

__Ttiseasy tosee that the set of feasible partitions is nonempty since the partition
(Oy, Z,) with O, = {i € J, : pi(y) < 0} and Z, = {i € J, : pi(y) > 0} is clearly
feasible (note that if perturbation is used, we have to use the technique described in
Section 3.4.4 to determine the sign of p;(y)).

Our problem now is to find all feasible partitions of .J,. The following lemma
turns out to be helpful in solving this problem.

Lemma 2 Let (6y, Zy) be the initial feasible partition defined above and let (O,, Z,)
be an arbitrary partition of J,. Then (O, Z,) is a feasible partition if the following
two conditions are fulfilled

(i) Uy~ = Zy N O, is a stable set in the induced hypergraph H[Zy]
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(i) U, 7 = O, N Z, is a stable set in the induced hypergraph H|O,].

Proof. We prove the statement in (i). The statement in (ii) is proved analogously.
Assume that Up~" is not a stable set in H[Z,], i.e., it contains an edge F' of the

hypergraph H[Z,]. Then by the feasibility of (O,, Z,) it follows that 3, pi(y) > 0.
Therefore, we cannot have > . . pi(y) < 0, which shows that (O, Z,) cannot be
a feasible partition since the first condition in (21) would be violated (note that
U)”' € O,). We thus arrived at a contradiction which implies the claim (i). 1

Lemma 2 and the discussion above motivate the following approach for com-
puting the set X (y) (actually a superset of X (y) is determined because (17)—(18)
have been replaced by (19)—(20)):

Algorithm B to compute X(y) :

1. Compute the initial feasible partition (6y, Zy) Compute the point Z associated
with (O, Z,) according to (22). Add Z to X(y).

2. Enumerate the sets S(H[Zy]) and S(H[O,]) which denote the sets of all stable
sets in the induced hypergraphs H[Z,| and H[O,]), respectively. (Note that

S(H[Z,]) and S(H[O,]) are subsets of the set of all stable sets of the hypergraph

3. With each (Sy,S;) € S(H[Zy]) X S(H[éy]), we associate the new feasible par-
tition (O, Z,) with O, = O, U (Sp \ S1) and Z, = Z, U (S; \ So). Compute the
point x associated with (O,, Z,) according to (22). Add = to X (y).

Note that the running time of algorithm B depends heavily on the time needed
by the second step in which all stable sets of two subhypergraphs of H need to be
enumerated. Eiter and Gottlob [10] have proposed an algorithm which lists all stable
sets of a hypergraph of bounded edge size in time polynomial in the size of the output
(the existence of such an algorithm without the assumption of bounded edge size is
an open question). The approach of [10] can be applied in our case, but in order to
arrive at a polynomial overall running time for the procedure for computing X (y),
we need to make sure that the size of the output depends polynomially on the size
of the input. This leads to the following sufficient condition for the polynomiality of
algorithm B.

Condition 1 The sum of the cardinality of all stable sets of H is polynomial in n.
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Simplifications are possible when H is a graph. For graphs a wealth of papers
are available which present algorithms for listing all stable sets of H in time poly-
nomial in the size of the output, see, e.g., [5, 6, 8, 16, 17, 18, 22|. The following
condition suffices to guarantee the polynomiality of algorithm B for the special case
of graphs. This condition is weaker than Condition 1 and is easier to check.

Condition 2 The degree of any vertex in H 1is at least n — blogn, where b is a
constant.

Observe that this condition ensures that the number of stable sets in H = (Vy, Eg) is
polynomial in n. This is true because the number of stable sets containing the vertex
i € V is bounded by 2°1°6™ = n which implies that the total number of stable sets

is bounded by n - n® = n®*!.

Now the proof of Theorem 1 is almost completed. We have already argued in
Sections 3.3 and 3.4 that the computation of the set Y, i.e., the first step of the generic
algorithm A presented in Section 3.2, can be implemented to run in polynomial time.

Now consider the running time of the second step (computation of the sets
X(y)). Since the sum of the cardinalities of all subsets of a stable set of cardinality
m is given by > ", (’:)k = m2™ ! the sum of the cardinalities of all stable sets is
bounded by o(N,m) = Nm2™~! where N denotes the number of maximal stable
sets and M denotes the size of the largest maximal stable set. The number o(N,m)
is bounded from above by a polynomial in n provided that N is a polynomial in n
and m = O(logn). This shows that the conditions of Theorem 1 imply Condition 1,
and hence the second step of algorithm A can be implemented in polynomial time as
well.

It remains to discuss the complexity of the third and last step of algorithm A.
To arrive at an overall polynomial time algorithm we need to make sure that the set
of points x such that F(z) = () can be constructed in polynomial time. Observe that
F(x) = 0 if and only if Vi, the vertex set of H can be partitioned into 2 stable sets.
Consequently Condition 1 also ensures that the set of points z such that F(z) = ()
can be constructed in polynomial time.

5 A polynomial time algorithm for special case C2

In this section we are going to deal with the special case C2 of problem CR-QPO1 (cf.
Section 1). Let G = (V, E) be an undirected graph the edges of which are partitioned
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into two sets E*(G) and E~ (G), i.e. EF(G)NE (G) =0 and ET(G)UE (G) = E.
Let Gt = (V,ET(G)) and G~ = (V, E~(G)), respectively, denote the subgraphs of
G which only contain the edges in E7(G) and in E~(G), respectively. If G’ is a
subgraph of G, let E*(G") denote the subset of edges in E*(G) which also belong to
G'. E~(G") is defined analogously.

Recall that the special case C2 arises for matrices A of rank d which addition-
ally satisfy the following conditions:

Gz + a5 + 2&1‘]' <0 for all {Z,j} € E+(G) (23)
Qi + Qg5 — 2az~j <0 for all {Z,j} € Ei(G) (24)
The main result of this section is the following:
Theorem 2 Assume that the following 2 conditions are satisfied

(a) The number of maximal stable sets in the graph G is polynomial in n.

(b) For each mazimal stable set S of GT and for each possible orientation G~[S] of
the induced subgraph G~[S], the number of extensions of the partial order on S

induced by the directed graph é’[S] to a total order on S is polynomial in n.

Then the CR-QPO01 stated in the form (2) can be solved in polynomial time when
restricted to the class of matrices fulfilling properties (23)-(24).

5.1 Definition of the neighborhood function used for case C2

The neighborhood function F associated with class C2 is implicitly defined as follows:
z' € {0,1}" is a neighbor of x € {0,1}" if x and 2’ differ in exactly two components
1 and 7, where we additionally require that the following two conditions are fulfilled:

e {i,j} € EY(G)impliesz; =z; (=1—2,=1— zh).

Note that in this case we have G = {J, (g 1y» F(2) = E.
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Let 6p for F = {i,j} € G be such that

a;; + ajj — 2aij if {Z,j) € Ef(G)

0>0F > { ai + a;; + 2a;; if {i,j} € ET(QG).

When ¢ = 0, we also allow the choice 6z = 0 for all F' = {i,j} € G.

Using the neighborhood function F introduced above, the defining inequali-
ties (8) of the polyhedron P, s (or the inequalities (9) defining its perturbed version

~

P, ) simplify to
pi(y) + pi(y) < dp forall F ={i,j} € E*(G) such that z; =2; =1  (25)
; J

—pi(y) — pi(y) < forall F ={i,j} € E*(G) such that z; =2; =0  (26)
pi(y) — pi(y) < op forall F={i,j} € E (G) such that x; = 1,2, =0 (27)

5.2 Construction of the set X(y) for case C2

We make the same assumptions than in the first paragraph of Section 4.2. Assume
that Y has already been computed and let y € Y. Let .J, again denote the set of the
indices j € {1,...,n} for which the value of z; has not been fixed in the course of
computing y. For j € {1,...,n}\ J,, let 2% denote the already fixed value of the j-th
component of z. Given a partition (O,, Z,) of the set {1,...,n}\ J,, we say that
x € {0,1}" is induced by the partition (O,, Z,) if z is set according to (22).

It can be assumed without loss of generality that

pi(y) —pi(y) #0  forall {i,j} € E"(G[],]). (28)
Indeed, by Corollary 1, this is true when d = 0 for all F' € G. When 0 < 0 and
we have p;(y) = pj(y) for F' = {i,j} € E~(G[J,]), then we must necessarily have
x; = x; (otherwise property (27) would be violated). Therefore, we can replace G' by
the reduced graph which results from G by shrinking the two vertices ¢ and j into
a single new vertex and removing the edge {7, j}. If necessary, this shrinking step is

repeated. We will end up with a reduced graph, which for simplicity is again called
G, where p;(y) # p;(y) holds for all {4, j} € E~(G[J,]), which implies (28).

Using assumption (28), it follows that if z satisfies (25)—(27), then it also
satisfies the following system of inequalities:

pily) <0  forall {i,j} € ET(G[J,]) such that z; = z; = (29)
pi(y) >0  forall {i,j} € ET(G[J,]) such that z;
pi(y) — pi(y) <0 for all {i,j} € E7(G[J,]) such that z; = 1,2, =0  (31)

Il

=
By

Il
—

w

]
~~
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Instead of computing the set X (y) of points z € {0,1}" such that y € P, 5,
we compute a superset X'(y) of X (y) which contains all points z € {0,1}" which
fulfill (29)—(31). We will proceed in a similar fashion as in Section 4.2.

An initial point Z in X'(y) can be computed as follows: Let 5y ={jeJ,:
pi(y) < 0} and let Zy = {j € J, : pj(y) > 0}. This partition induces a point
z € {0,1}". All other points in X'(y) are obtained by flipping the values of z; for
a subset of indices j from 6y U Zy. More specifically, let (O,, Z,) be an arbitrary
partition of {1,...,n}\ J,. Define U)7" = Z,N 0, and U, = O, N Z, (these sets
contain the indices j for which the value of z; will be flipped).

In order to guarantee that the partition (O,, Z,) leads to a point in X'(y), the
following properties have to be fulfilled with respect to the set U)~":

e U)”! must be a stable set of the induced subgraph G*[Zy}; otherwise prop-
erty (29) would be violated by the point z € {0,1}" which is induced by
(Oy, Zy). (The proof of this claim is done along the lines of the similar proof in
Section 4.2).

e Observe that by (31), x must satisfy
x; > x; forall {i,j} € E7(G[J,]) such that p;(y) — p;(y) <0 (32)

(recall again that p;(y) # p;(y) for all {i, 5} € E~(G[J,])). Let S be a maximal
stable set of G*[Z,] such that UJ™" C S. Observe that the point z € {0,1}"
induced by the partition (O, Z,) fulfills z; = 1 for all j € U}~" (those compo-

nents change their value from 0 to 1 when moving from (6y, Zy) to (O, Z,))
and z; =0 for all j € S\ U;”l (those components keep their original value 0).
Clearly UJ~" must be such that the following relaxation of (32) is fulfilled:

z; > x; forall {i,j} € E7(G[J, N S]) such that p;(y) — p,;(y) <0 (33)

Analogous requirements are posed for the set Uyl_*o.

We propose the following procedure to compute X (y) (actually a superset of
X(y)).

Algorithm B’ to compute X(y) :

1. Compute the initial feasible partition (6y, Ey) and the point Z it induces. Add
7 to X(y).
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2. Enumerate the sets 8(G+[§y]) and S(G™ [5y]) which denote the sets of all max-
imal stable sets in the induced graphs G*[Z,] and G*[O,], respectively. (Note
that S(G*[Z,]) and S(GT[0,]) are subsets of the set of all maximal stable sets

of the graph G*.)

3. For each S, € 8(G+[§y]), construct the set X of all solutions to the inequality

system (33) resulting for S = Sp. Similarly, for each S; € S(G*[0,]), construct
the set X' of all solutions to the inequality system (32) resulting for S = 5.

4. For each (Sy, Sy) € S(GJ’[Z/]) x S(G* [6y]) perform the following steps:

For each %0 € X% and 2°' € X*!, compute the point  defined as follows:

[ 4% for 7 € Sy

T
:cfl for j € Sy
€Ty = 0 fOI'j S Zy \ SO (34)
1 for j € 6y \ Sh
|z forje

Add z to X (y).

The running time of algorithm B’ is determined by steps 2 and 3. Due to
condition (a), step 2 can be performed in polynomial time by one of the various
algorithms that enumerate stable sets, while the polynomiality of step 3 results from
condition (b).

In order to complete the proof of Theorem 2, it remains to be shown that the
set of points z € {0,1}" such that F(z) = () can be computed in polynomial time.
From the definition of the neighborhood function F, it follows that if F(x) = (), then
the following two properties are fulfilled:

e Vp={ieV:z;=0}and V; = {i € V : x; = 1} are two stable sets of the
graph G™.

e There are no edges in E~ (G) connecting a vertex in Vj with a vertex in V.

In particular any connected component of G~ is completely contained in either Vj
or in V;. The existence of a point x such that F(z) = () can hence be checked as
follows: First, construct the list of connected components of G~, and enumerate the
set of all maximal stable sets of the graph G*. Then check for each pair (S, S’) of
maximal stable sets of G* such that S U S’ =V, if there exists an assignment of the
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connected components of G~ to the stable sets S and S’ such that each connected
component is completely included in the stable set to which it has been assigned. In
the affirmative case, the point 2 € {0,1}" with z; =1 for i € S and z; =0 for i € S’
satisfies F(z) = (). Otherwise, we have F(z) # () for all z € {0,1}™.

Once the existence of a point z € {0,1}" with no neighbors has been es-
tablished, the set of all x with this property can by found as follows: We consider
all partitions of the set of connected components of G~ into two parts and check if
the two parts of the partition define stable sets of the graph G*. It remains to be
shown this can be done in polynomial time. Denote by n_ the number of connected
components of G~ and let (V, V) be the partition of V into two stable sets which
corresponds to z, i.e. Vo ={i € V :2; =0} and V, = {i € V : z; = 1}. Suppose
that V) is the stable set that contains the largest number of connected components:
77,5 .
order induced by an orientation of the edges of E~(G[V]), the number of possible

this number of components is at least equal to It follows that for each partial

extensions to a total order is at least 275 . By the assumption of Theorem 2, the

number of extensions is bounded by a polynomial in n, say ps(n), hence ps(n) > 2%
and therefore n, < 2logps(n). It follows that the number of partitions we have to
examine is at most 2% < (py(n))?, i.e., polynomial in n. This concludes the proof of
Theorem 2.

6 Comparison with the algorithm of Allemand,
Fukuda, Liebling, and Steiner

In their paper [1], Allemand, Fukuda, Liebling, and Steiner propose a polynomial
algorithm for solving problem (2) when there is no linear term (i.e., ¢ = 0) and
the matrix A is negative semidefinite (i.e., A\, < 0 for £ = 1,...,d if a spectral
decomposition of A is used, see the explanation in Section 1 for further details).

The algorithm of Allemand et al. involves the enumeration of the extreme
points of a special polytope, called zonotope. The reader interested into the practical
implementation of the method of Allemand et al. is recommended to read the recent
paper of Ferrez, Fukuda, and Liebling [11] where an improved method for enumerating
the extreme points of the zonotope is proposed.
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6.1 Method of Allemand, Fukuda, Liebling, and Steiner

In this section we briefly describe the method of Allemand et al. [1] in a slightly more
general framework. We are going to consider the problem:

d

min f(x) = By + (u®,x) + Y Ae (B + (v, 1))

e{0,1}n
z€{0,1} =

The case treated by Allemand et al. arises by setting u® = 0 and 3, = 0 for all
(=0,....d.

Consider the mapping T from R to R**! that transforms a point z into the
point T(z) = (By + (v, z),..., B4 + (u?,x)). The image of the hypercube [0,1]" is
a special polytope @, of R¥!, called zonotope. The crucial observation is that Q,
has O(n?) extreme points, which can be computed in O(n?) time (see Allemand et
al. [1]; note that in the special case treated in [1] the zonotope is d— rather than
(d+1)-dimensional). The algorithm in [1] evaluates the expression 2+ 30_, A (2)
for each extreme point z = (2o, ..., 24) of @, and keeps the points of smallest value.
Observe that, while each extreme point of ), is the image of some point x € {0,1}",
not all points in {0, 1}" are transformed into an extreme point of @),. Therefore, the
algorithm works correctly only if the optimal solution can be shown to be among the
points 2 € {0, 1}" corresponding to an extreme point of ),. Allemand et al. observed
that this property is true when the matrix A is negative semidefinite by exploiting
the concavity of the objective function. The next lemma shows that the approach of
Allemand et al. works for a larger class of instances of the CR-QPO01.

Proposition 5 Let 7 be an instance of the problem CR-QP01 with the property that
all optimal solutions of the continuous relaxation of instance I are integral. Then the
algorithm of Allemand et al. solves the instance T to optimality.

Proof. We are going to show that if the algorithm of Allemand et al. fails, then there
exists an optimal solution of the continuous relaxation that is fractional, contradicting
the assumptions of the theorem.

Let x* be an optimal solution of problem CR-QPO01 that is not found by the
algorithm of Allemand et al. It follows that the image z* = T'(z*) of z* under
the mapping T is not an extreme point of the zonotope (),. Therefore, z* can be

written as a convex combination of ¢ > 2 extreme points of @, say (1), ..., 2. Let
¢U) € {0,1}" be such that zU) is the image of £U) under T, i.e., 2) = T(£Y) for
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j =1,...,t. Hence, there exists a real vector v = (vq,...,14) > 0 with Z;Zl v, =1
such that

t

zp = Z vizy) = ZVJ' (Be + (u',€9%)
=1 '

J=1

t
= ﬁe+<u‘,2uj§m> (=0,....d

i=1

But then 23:1 v;€U) is a feasible solution of the continuous relaxation with the same
objective function value than z*. It follows that the continuous relaxation has at least
one optimal solution that is fractional. 1

Observe that the class of instances of the CR-QPO01 to which Proposition 5
applies, is a proper superset of the class of instances which arise for negative semidef-
inite matrices A. Let A denote the class of all n x n matrices A with strictly negative
entries on the main diagonal. It is easy to show that matrices A € N lead to instances
of the CR-QPO01 for which Proposition 5 is valid. Suppose the contrary. Let Z' be
an instance resulting from a matrix A" € N. Let 2* = (z7,...,2}) be an optimal
solution of the continuous relaxation of Z', and assume that z7} is fractional for some
j. Then z7 is the optimal solution of a quadratic optimization problem of the form

: ! 2 * * * * * * * *
Jmin ajry + By, @, g, )2 + O], 2, 2y, 1)
=4y =

for some quadratic functions B and C'. Since a;j < 0, the optimum cannot be attained
at a fractional value, contradicting the assumption.

Note that the class of instances resulting from matrices A € N is a special
case of the class C1 considered in Section 4. This special case is obtained by using
the hypergraph H = (Vi, Ey) where Ey contains only edges of size 1 (i.e. H is a
graph all of whose edges are loops). It is not difficult to verify that the conditions of
Theorem 1 are satisfied for H.

It is well-known that the class of negative semidefinite matrices is contained
in the set of matrices with nonpositive entries on the main diagonal. This class of
matrices is a superset of A/. It is easy to see that our algorithm applies to this class
as well since we either have a;; < 0 for all i = 1,...,n, or there exist entries a;; = 0.
In the first case, the arguments from the paragraph above apply. In the latter case,
the variable z; does not appear in the quadratic part of the objective function which
implies that the optimal value of z; can easily be obtained from the linear part of the
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objective function. Consequently, our algorithm can be applied to solve the special
case of the CR-QPO01 with negative semidefinite A in polynomial time. For the sake
of fairness, it needs to be pointed out, however, that the algorithm of Allemand et al.
has a lower complexity than our algorithm.

6.2 Non-dominance

We now compare our approach with the approach of Allemand et al. We show that
none of the two approaches dominates the other with respect to the class of instances
of the CR-QPO01 which can be solved in polynomial time.

We first present an instance Z; of the CR-QPO01 which is solvable by our ap-
proach, but not by the approach of Allemand et al. Consider the quadratic function

n 2
f(z) = (nPay +29)* — <:c1 + 2n%x, + Z(Zn2 + z)xz) .

=3

It is easy to check that the matrix A corresponding to the quadratic part of f satisfies
the condition a; + a;; + 2|a;;| < 0 for 1 <i < j < n. The resulting class of instances
belongs to both C1 and C2, and can hence be solved in polynomial time by our
approach.

We are now going to argue that the approach of Allemand et al. fails. Since the
variables z;,7 = 3,...,n, appear only in the second term, they must take the value
1 in an optimal solution of the continuous relaxation. Solving the 2-dimensional
problem in the remaining variables x; and x5 shows that the unique minimum is

. ) n2+(n72)(2n2+”.—+3) .
attained for = (A, 1,...,1) with A = = (see the appendix for more
details). Therefore the instance Z; cannot be solved by the method of Allemand et

al.

Next we give an example of an instance Z; which can be solved by the approach
of Allemand et al., but not by our approach. Consider the quadratic function given
by

T
= 4+ 1)z, +1] — — | .
= (S ent) - (£%)
This instance results from the matrix A with entries a;; = (1 + 1)(j + 1) — % It
is easy to see that A does neither belong to class C1 nor to class C2 (note that
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ai; + a;; — 2la;;| > 0 for all 4,7). Consequently our methods do not apply. On
the other hand, f(z) is negative for all x € [0,1]", therefore the optimal solution
of the continuous relaxation must be integral (see Hammer, Hansen, Pardalos, and
Rader [15]), and hence this problem can be solved in polynomial time by the method
of Allemand et al. (and also by the method of Hammer et al.).

7 Conclusions

In this paper, we derived two new polynomially solvable special cases of the CR-QPO1.
Our generic algorithm works by enumerating a superset of the set of local minima of
the objective function f with respect to a suitably chosen neighborhood.

Our results are essentially only of theoretical interest since our algorithms for
the solution of the special cases C1 and C2 have running times which make them
unsuited for solving practical problems for reasonably large values of n. (The main
reason for the high running times is their dependency on the cardinality of the set
Y.) Tt is, however, conceivable that heuristics obtained from the general idea of our
approach lead to promising results. For example, one could think of developping
local search heuristics based on the neighborhoods used in this paper. Another way
to arrive at a heuristic is to refrain from computing the full set Y and be instead
satisfied with a set Y’ of randomly selected points of R?. Instead of searching for the
best solution in X (Y'), we then search for the best solution in X (Y”).

Finally note that the classes presented in this paper are special cases of the
more general class defined by:

> ag+ Y a;—2) ) ay<0  forall (i, F) € Egy

1,JEF1 1,jEF i€l jEF,

where HH = (Vgp, Exg) is a “hyperhypergraph” whose edges are pairs {F}, Fy}
of subsets of Vgy (a hypergraph can then be considered as the special case of a
hyperhypergraph with all edges of the form {F, 0} where F' is a subset of V). In
particular, the class considered in Section 5 corresponds to the hyperhypergraphs
with edges {F}, F»} satisfying |Fy| + |F3| = 2. This suggests the following question:
What conditions on H H ensure that the associated instances of the CR-QPO01 can be
solved in polynomial time ?
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Appendix

In this appendix we provide more details on the solution of the continuous relaxation
of the instance Z; of the CR-QP01 which has been investigated in Section 6.2. The
resulting quadratic programming problem QP is given by:

n 2
: 2 2 2 § 2 :
xél&)l’lll}n 7(%) (n X1+ xg) (:1:1 n-To : 3( n z):r )

n

Set hy(x) = nzy + x5 and ho(x) = 21 + 2n’z2 + Y (2n% + i)z;. Hence we can

i=3
write f(z) = (hi(x))® — (ha(2))’. Since the variables z;, i = 3,...,n only appear in
the second term and since hs(z) > 0, we will have z; = 1,4 = 3,...,n in any optimal

solution. Consequently we are left with a function in 2 variables:

3\ \ 2
g(x1,29) = (n%xy + 39)? — (:cl + 2n%zy + (n — 2) <2n2 + n—2i— )) .

Assume for a moment that the value of the function hy(z) at the optimum is known,
and let this value be denoted by h%. Then the optimal solution z* of the QP can be
obtained as solution of the following continuous knapsack problem:

min n’x, + xo
% n+3
Ct x1 + 2n%xo = b — (n — 2) (2n? + =£2)
x1, 29 € [0, 1].

—5, it is well known that the optimum solution is either of the form
(x1,29) = (0,A) or (z1,29) = (A, 1) with 0 < A < 1. The minimum of

o0 = = (s (=) (04 252

on [0, 1] is attained for A = 1 (observe, for example, that the derivative of ¢(0, \) with
respect to A is negative).
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On the other hand, we have

g0 1) = (BPA+1)2 — <)\+2n2+(n—2) (2n2+ ”‘;3»2.

By setting the derivative of h(\) = g()\, 1) equal to 0, we obtain that the minimum
of ¢ is attained for

n?+(n—2) (2n2+ "TH)

\ =
nt—1

Note that A € [0,1]. Observing that gN(S\, 1) < ¢(0,1), we conclude that the minimum
of f over [0,1]™ is obtained for z = (A, 1,...,1), as claimed in Section 6.2.

38



