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R�esum�eDans 
et arti
le nous 
onsid�erons le probl�eme de minimisation quadratique 0�1non-
ontraint ave
 une matri
e de rang 
onstant, not�e CR-QP01. Ce probl�eme
onsiste �a minimiser la fon
tion quadratique hx;Axi + h
; xi sur l'ensemblef0; 1gn o�u 
 est un ve
teur de Rn et A est une matri
e sym�etrique r�e�elle dedimension n� n et de rang 
onstant r.Nous pr�esentons d'abord un algorithme pseudo-polynomial pour r�esoudre leprobl�eme CR-QP01, qui est 
onnu pour être NP-diÆ
ile d�ej�a pour r = 1. Nousd�erivons ensuite deux nouvelles 
lasses de 
as sp�e
iaux de CR-QP01 qui peu-vent être r�esolues en temps polynomial. Ces 
lasses s'obtiennent en ajoutantdes restri
tions suppl�ementaires sur la matri
e A. Finalement nous 
omparonsnotre algorithme ave
 le r�e
ent algorithme de Allemand et al. [1℄ pour CR-QP01 lorsque A est une matri
e semi-d�e�nie n�egative et nous �etendons le do-maine d'appli
ation de 
e dernier algorithme. Nous montrons qu'au
un desdeux algorithmes ne domine l'autre par rapport aux 
lasses d'instan
es quipeuvent être r�esolues en temps polynomial.Mots Cl�es: programmation quadratique 0-1, 
as sp�e
ial, 
omplexit�e, mini-mum lo
al, matri
e de rang 
onstant.

2



1 Introdu
tionProblem statement. In this paper we 
onsider a spe
ial 
ase of the un
onstrained0-1 quadrati
 programming problem, QP01 for short. The QP01 
an be stated asfollows:minx2f0;1gnhx;Axi+ h
; xi (1)where 
 is a ve
tor in Rn , A is a symmetri
 real n � n matrix and h�; �i denotes theEu
lidean inner produ
t in Rn . Note that sin
e x2i = xi for xi 2 f0; 1g, one 
ouldassume in problem (1) that there is no linear term, i.e., that 
 = 0. Applying thistransformation, however, 
hanges the diagonal elements of A. Sin
e this paper is 
on-
erned with spe
ial 
ases of the QP01 whi
h result from spe
ially stru
tured matri
es,we prefer to work with the representation (1). Problem QP01 has been investigatedin numerous papers and has many appli
ations, see e.g. Boros and Hammer [4℄ andthe referen
es 
ited therein.It is well-known that QP01 is strongly NP-hard; for example, it is equivalentto the maximum 
ut problem (MC) whi
h is well-known to belong to the 
lass ofstrongly NP-hard problems (for the equivalen
e see Hammer [14℄, for the 
omplexityof the MC problem see Garey and Johnson [13℄).The topi
 of this paper is the 
onstant rank un
onstrained quadrati
 0-1 pro-gramming problem, CR-QP01 for short, whi
h arises as spe
ial 
ase of the QP01 byrestri
ting the matrix A to the 
lass of matri
es with 
onstant rank r. This restri
-tion remains NP-hard even for the spe
ial 
ase of rank 1 matri
es (for details, seeSe
tion 2).Related results. In the literature mainly two types of spe
ial 
ases of the QP01have been investigated. The �rst type typi
ally results from putting restri
tions onthe graph G(A) whi
h results by introdu
ing an edge fi; jg for aij 6= 0. There is a
lose relationship between this 
lass of spe
ial 
ases of the QP01 and spe
ial 
asesof the maximum 
ut problem for spe
ial graph 
lasses. An example of this �rsttype of spe
ial 
ases is the 
ase whi
h results from graphs G(A) with bounded tree-width. This spe
ial 
ase 
an be solved in polynomial time (see Crama, Hansen andJaumard [7℄ for a treatment in the more general setting of pseudo-Boolean programs),and subsumes the spe
ial 
ases where the graph G(A) is series-parallel (Barahona [2℄)or where G(A) is a binary tree (Pardalos and Jha [20℄). There exist quite a number ofother polynomially solvable spe
ial 
ases of the QP01 whi
h result from restri
tions3



on the graph G(A). As this paper deals with a di�erent 
lass of spe
ial 
ases, werefrain from giving further details.The se
ond 
lass of spe
ial 
ases arises from putting restri
tions on the matrixA = (aij). The best known example of this type is the 
ase of nonpositive matri
esA, i.e., more pre
isely, aij � 0 for 1 � i < j � n. This 
ase 
an be solved byredu
tion to a maximum 
ow problem in a network with O(n2) nodes (see Pi
ardand Rat
li� [21℄). The CR-QP01 belongs to this se
ond 
lass of spe
ial 
ases. Thefollowing spe
ial 
ases of the CR-QP01 have been treated in the literature.� A is of rank r = 1 and there is no linear term, i.e., 
 = 0. This 
ase 
an besolved in a straightforward way by inspe
tion.� A has at most one positive and at most one negative eigenvalue and the matrix(A; 
) is of rank 2. In this 
ase, the obje
tive fun
tion f in (1) 
an be writtenas produ
t of two linear fun
tions. This spe
ial 
ase of the CR-QP01 is stillNP-hard, see Hammer et al. [15℄. In [15℄ an O(n logn) algorithm is proposed forsolving the 
ontinuous relaxation, and then 
ases are 
hara
terized where theoptimal solution of the relaxation is 0-1, i.e., 
onstitutes an optimal solution ofthe CR-QP01.� A is negative semide�nite and there is no linear term, i.e., 
 = 0. For this 
aseAllemand, Fukuda, Liebling and Steiner [1℄ proposed an algorithm of 
omplexityO(nr�1) for the 
ase r � 3 and O(n2) for r = 2. At the end of this paper we willshow that their algorithm a
tually solves a broader 
lass of problems, namelyall quadrati
 0-1 problems with a matrix of rank r that have the property thatall optimal solutions of the 
ontinuous relaxation are integral.Our results. Our main result is the identi�
ation of the following two new 
lassesof polynomially solvable 
ases of the CR-QP01:(C1) This 
lass results from a hypergraph H = (VH ; EH) with bounded edge size.We require that Pi;j2F aij < 0 holds for all edges F 2 EH and that the stablesets of H 
an be enumerated in polynomial time (for details see Se
tion 4).(C2) This 
lass results from an undire
ted graph G = (V;E), the edges of whi
h arepartitioned into two 
lasses E�(G) and E+(G). We require that� aii + ajj � 2aij < 0 for all fi; jg 2 E�(G)aii + ajj + 2aij < 0 for all fi; jg 2 E+(G)4



holds. Moreover, the following two properties have to be ful�lled: (i) Thenumber of maximal stable sets in the graph (V;E+(G)) is polynomial in n,and (ii) for ea
h maximal stable set S and for ea
h possible orientation O ofthe edges in the set E�(G[S℄) = ffi; jg 2 E�(G) and i; j 2 Sg, the numberof extensions of the partial order on S indu
ed by O to a total order on S ispolynomial in n (for further details and de�nitions see Se
tions 3.7 and 5).Organization of the paper. The paper is organized as follows. In Se
tion 2,we dis
uss the 
omplexity of problem CR-QP01 and present a pseudopolynomialalgorithm for its solution. In Se
tion 3, we present the general framework of ourapproa
h. Se
tion 4 deals with the spe
ial 
ase C1 and Se
tion 5 with the spe
ial 
aseC2. In Se
tion 6, we 
ompare our approa
h with the approa
h of Allemand, Fukuda,Liebling and Steiner [1℄. More spe
i�
ally, we show that the range of appli
ability ofthe approa
h of [1℄ 
an be extended. We furthermore provide examples whi
h showthat neither of the two approa
hes dominates the other in terms of the 
lasses ofinstan
es of the CR-QP01 that 
an be solved in polynomial time. The paper is 
losedwith a short 
on
lusion in Se
tion 7.2 Complexity aspe
ts of the CR-QP01In this se
tion, we are going to investigate the 
omplexity of the CR-QP01 in somemore detail. In parti
ular, we will present a pseudopolynomial time algorithm for CR-QP01. This shows that, in 
ontrast to the general QP01, the spe
ial 
ase CR-QP01with a matrix A of 
onstant rank is not NP-hard in the strong sense.For the rest of the paper we will make use of the following alternative repre-sentation of problem CR-QP01:minx2f0;1gn f(x) = he
; xi+ dX̀=1 �` ��` + hu`; xi�2 (2)where d is a 
onstant, e
 and u1; : : : ; ud are given ve
tors in Rn , and �1; : : : ; �d,�1; : : : ; �d are given reals. Note that we 
ould always set �` = 0 for ` = 1; : : : ; d,be
ause all linear terms 
an be 
olle
ted in the term he
; xi and additive 
onstants donot play a role in the minimization of f . The reason why we, nevertheless, use themore general formulation is that the 
hoi
e of the ve
tor e
 and of the numbers �`might have an in
uen
e on the running times of our algorithms (for further detailssee the 
omments below). 5



From linear algebra it is known that any quadrati
 fun
tion 
an be alwaysrepresented in the form (2). One method to arrive at su
h a representation is todetermine a spe
tral de
omposition of A, i.e., to use the non-zero eigenvalues of Aas values �j and the eigenve
tors as ve
tors uj, j = 1; : : : ; d where d = r (re
all thatr denotes the rank of A). Moreover, all �` are set to zero. This approa
h has thedisadvantage that it might lead to irrational numbers in the representation (2), evenin the 
ase where all entries of A and 
 are rational. If a rational representationis needed, one 
an 
ompute a so-
alled LDU de
omposition of A whi
h leads inthe symmetri
 
ase to a de
omposition of A as produ
t LDLT where L is a lowertriangular matrix and D is a diagonal matrix with rank d = r (see text books onlinear algebra, e.g. [12℄, for details).Sin
e the representation of a quadrati
 fun
tion in the form (2) is not unique,this poses the question of �nding the best su
h representation. Di�erent representa-tions 
an have di�erent values for d and e
, whi
h will in
uen
e the running time ofour algorithms. For example, by 
hoosing the numbers �` in a 
lever way, it mightbe possible to arrive at e
 = 0, whi
h, as we will see later, leads to algorithms withlower 
omplexity for the 
lasses 
onsidered in this paper. Similarly, a 
lever 
hoi
e ofe
 might allow to arrive at a quadrati
 part with rank d < r. We will not deal withthe question of �nding the representation whi
h results in the smallest running timesof our algorithms in this paper. This is a problem in its own right.It is well-known and easy to see that problem CR-QP01 is NP-hard already formatri
es of rank 1. If the representation (2) is used, one 
an even moreover assumethat e
 = 0. To see this, 
onsider the well-known subset sum problem, see [13℄,whi
h, given nonnegative integers s1; : : : ; sn and an integral target value B, asks forthe existen
e of a subset I � f1; : : : ; ng su
h that Pi2I si = B. This question hasthe answer yes if and only if the optimal value of the instan
e of the CR-QP01 givenby minx2f0;1gn (Pni=1 sixi � B)2 is 0.The following result shows that problem CR-QP01 
an be solved in pseudo-polynomial time for rational data.Proposition 1 Let an instan
e of problem (2) be given with e
; u1; : : : ; ud 2 Zn,�1; : : : ; �d 2 Z and �1; : : : ; �d 2 Q . Let U = 2maxi=1;:::;n;`=1;:::;dfjuìj; je
ijg. Thenthe given instan
e 
an be solved in O �dU2d+2n2d+3� time.To prove Proposition 1, we need the following lemma.6



Lemma 1 Let K = fkijg be a m � n integral matrix, and b an integer ve
tor ofdimension m. The problem of de
iding whether there exists a ve
tor x 2 f0; 1gn su
hthat Kx = b 
an be solved in O (mnm+1�m) time where � = 2 maxi;j=1;:::;nfjkijjg.Proof. The proof of this lemma is based on a modi�
ation of the dynami
 pro-gramming approa
h of Papadimitriou [19℄ for the integer linear feasibility problem.Let k(i) denote the i-th 
olumn of the matrix K, i = 1; : : : ; n. At the j-th stageof the dynami
 program, we 
ompute the set Wj of ve
tors w that 
an be writ-ten as w = jPi=1xik(i) with xi 2 f0; 1g, i = 1; : : : ; j. The 
ardinality of the setWj is bounded from above by (j�+ 1)m. Hen
e the set Wn 
an be 
omputed inO �mPn�1j=1 (j�+ 1)m� = O (mnm+1�m) time. To answer the feasibility question,it suÆ
es to 
he
k if the set Wn 
ontains the ve
tor b, whi
h 
an also be done inO (mnm+1�m) time.Proof of Proposition 1. For notational 
onvenien
e, set u0 = e
. Due to thede�nition of U we have, �nU2 � hu`; xi � nU2 for all ` = 0; : : : ; d and x 2 f0; 1gn. Letv = (v0; : : : ; vd) be an integral ve
tor in the box ��nU2 ; nU2 �d+1. We asso
iate with vthe following parametrized minimization problemmin gv0;:::;vd(x) = v0 + dX̀=1 �` (�` + v`)2 (3)s.t. � hu`; xi = v` ` = 0; : : : ; dxi 2 f0; 1g i = 1; : : : ; n:For ea
h 
hoi
e of v, the set of 
onstraints of the 
orresponding problem (3) de-�nes a feasibility problem whi
h 
an be solved in O �dnd+2Ud+1� time applying theapproa
h from Lemma 1. The optimal value of problem (2) is the minimum ofv0 + dP̀=1�` (�` + v`)2 over all ve
tors v = (v0; : : : ; vd) whi
h 
orrespond to a feasibleproblem. There are (nU + 1)d+1 = O �(nU)d+1� ve
tors (v0; : : : ; vd) to test, hen
e the
laimed result follows.3 General algorithmi
 frameworkIn this se
tion we present the general framework of our approa
h. In the two subse-quent se
tions we will dis
uss how polynomial time algorithms 
an be obtained for7



the spe
ial 
ases C1 and C2 introdu
ed in the introdu
tion.In Se
tion 3.1 we introdu
e some key notations for the generi
 algorithmi
approa
h whi
h will be sket
hed in Se
tion 3.2. The generi
 algorithm 
onsists ofthree steps. We propose two variants for performing the �rst step, whi
h are arepresented in Se
tions 3.3 and 3.4, respe
tively. The se
ond and third steps of thealgorithm are addressed in Se
tions 3.5 and 3.6, respe
tively. In Se
tion 3.7, weintrodu
e some graph theoreti
al de�nitions that will be needed in the remainder ofthis paper.3.1 Neighborhoods and lo
al minimaA key notion needed in this se
tion is the notion of a neighborhood. The fun
tionN whi
h maps x 2 f0; 1gn to the set N (x) � f0; 1gn n fxg is 
alled a neighborhoodfun
tion, or neighborhood for short. The members of the set N (x) are 
alled neighborsof x. Note that we allow N (x) = ;, i.e., x has no neighbors.~x 2 f0; 1gn is said to be a lo
al minimum of (2) with respe
t to the neighbor-hood fun
tion N if f(~x) � f(x) holds for all x 2 N (~x). ~x 2 f0; 1gn is said to be aglobal minimum of (2) if f(~x) � f(x) holds for all x 2 f0; 1gn.In the sequel it will be more 
onvenient to use the following alternative repre-sentation of neighborhood fun
tions: For x 2 f0; 1gn and a subset F of f1; : : : ; ng, letxF denote the ve
tor whi
h results from x by 
ipping the values of the 
omponentsof x 
orresponding to indi
es in F , i.e.,xFi = � 1� xi if i 2 Fxi if i 62 F i = 1; : : : ; n:Clearly, to ea
h neighborhood fun
tion N , we 
an asso
iate a fun
tion F su
h thatN (x) = fxF : F 2 F(x)g holds for all x 2 f0; 1gn. By a slight abuse of notation,we will in the following also refer to F as a neighborhood fun
tion. We denote by Gthe union of the sets F(x) over all x 2 f0; 1gn, i.e., G = Sx2f0;1gn F(x). We assumethat the sets in G are ordered in some arbitrary way, say G = fF1; F2; : : : ; Fgg whereg = jGj.Both spe
i�
 neighborhood fun
tions whi
h will be used in this paper (inSe
tions 4 and 5, respe
tively) are symmetri
, i.e. ful�ll the property x 2 N (x0) ,x0 2 N (x). Moreover we assume that there exists a 
onstant p su
h that jF j � p forall F 2 G. 8



We are now going to 
hara
terize lo
al minima with respe
t to a given neigh-borhood fun
tion F .Proposition 2 x is a lo
al minimum with respe
t to the neighborhood fun
tion F ifand only if the following property holds for all F 2 F(x):Xj2F (2xj � 1) e
j + 2 dX̀=1 �`uj̀(�` + hu`; xi)!� Xi;j2F(2xi � 1)(2xj � 1)aij � 0 (4)Proof. Compute the di�eren
e � = f(x)� f(xF ) and note that dP̀=1�`uìuj̀ = aij forall i; j = 1; : : : ; n. It is then easy to see that the 
ondition � � 0 is equivalent to the
ondition (4).We are now going to reformulate the 
onditions (4). Our goal is to arrive at apolyhedral des
ription. For ea
h set F 2 G we 
hoose a value ÆF su
h thatXi;j2F(2xi � 1)(2xj � 1)aij � ÆF for all x 2 f0; 1gn: (5)Let Æ = (ÆF1; ÆF2 ; : : : ; ÆFg). To ea
h x 2 f0; 1gn we asso
iate a polyhedron Px;Æ � Rdwhi
h 
ontains all y 2 Rd su
h that2 dX̀=1 �` Xj2F (2xj � 1)uj̀! y` � ÆF �Xj2F (2xj � 1)e
j for all F 2 F(x): (6)Proposition 2 implies that for all lo
al minima x with the property F(x) 6= ;(i.e. x has at least one neighbor) the polyhedron Px;Æ � Rd is nonempty (to see that,set y` := �` + hu`; xi for ` = 1; : : : ; d). In order to write the inequalities de�ning thepolyhedron Px;Æ in a more su

in
t way, we introdu
e the terms rj(y) de�ned byrj(y) = e
j + 2 dX̀=1 �`uj̀y` j = 1; : : : ; n: (7)Then Px;Æ 
an be de�ned as the set of all y 2 Rd su
h that for all F 2 F(x) we haveXj2F (2xj � 1)rj(y) � ÆF : (8)9



3.2 A generi
 algorithmIn this se
tion we are going to propose a high-level des
ription of a generi
 algorithmA to solve the CR-QP01, stated in the form (2). In subsequent parts of Se
tion 3we will give more details on how the di�erent steps of the generi
 algorithm A 
anbe performed. Further spe
ializations result from the 
hoi
e of spe
i�
 neighborhoodfun
tions F in Se
tions 4 and 5, where the spe
ial 
ases C1 and C2 are treated. Wenote that algorithm A is ineÆ
ient for the general 
ase of CR-QP01. In Se
tions 4and 5, respe
tively, we will show how A turns into a polynomial time algorithm forthe spe
ial 
ases C1 and C2, respe
tively.Generi
 algorithm A1. Constru
t a set Y with the property that Y 
ontains at least one point y 2 Px;Æfor all lo
al minima x with F(x) 6= ;.2. For ea
h y 2 Y , 
onstru
t the set X(y) = fx 2 f0; 1gn : y 2 Px;Æg.3. Compute f(x) for all x 2 X(Y ) = Sy2Y X(y) and for all x 2 f0; 1gn su
h thatF(x) = ;. Let x� be a point with minimal obje
tive fun
tion value among thetested points. Then x� 
onstitutes an optimal solution of problem CR-QP01.Clearly the 
hoi
e of Æ has a strong in
uen
e on the e�e
tiveness of algorithmA. If Æ is badly 
hosen, then the 
ardinality of the sets X(y) will be too large toallow an eÆ
ient algorithm (re
all that in the �nal step of A an exhaustive sear
h isdone over the union of all sets X(y) for y 2 Y ). Observe that Pj2F (2xj � 1)rj(y) =�Pj2F (2xFj � 1)rj(y) holds for F 2 F(x). This motivates to 
hoose ÆF su
h that, ifpossible, not both x and its 
orresponding neighbor xF ful�ll the inequality (8). Thiswill help in a
hieving our goal to keep the 
ardinalities of the sets X(y) suÆ
ientlysmall. In the following we will make use of the following two di�erent strategies torea
h this goal:S1 Choose ÆF < 0 for all F 2 G.S2 In the 
ase e
 = 0, there exists the following alternative 
hoi
e: Set ÆF = 0 for allF 2 G. This 
hoi
e leads to an algorithm with improved running time as we willsee later on, but it makes only sense to apply it when Pj2F (2xj � 1)rj(y) 6= 0holds for a suÆ
iently large number of sets F 2 G (for details see Se
tion 3.4).10



In Se
tion 3.3, we show how to 
onstru
t the set Y when strategy S1 is used. InSe
tion 3.4, we show how to perturb the problem so that Pj2F (2xj � 1)rj(y) 6= 0holds for all x 2 f0; 1gn and a suÆ
iently large number of sets F 2 G. This enablesthe use of strategy S2. The 
onstru
tion of the set X(y) is dis
ussed in Se
tion 3.5.3.3 Constru
tion of the set Y using strategy S1 to 
hoose ÆIn this se
tion strategy S1 will be applied to 
hoose Æ. Let � be the set of all 
onstraintsof type (8). Note that a 
onstraint in (8) is de�ned by a subset F 2 G and a 
hoi
efor the values xj, j 2 F . Thus, we have j�j � Ppj=1 �nj�2j = O(np) (re
all that weassume throughout that jF j � p for all F 2 G). Suppose that the 
onstraints in �are ordered, i.e., � = f
1; 
2; : : : ; 
j�jg.We now 
onstru
t a tree T as follows: A node of T at level h is 
hara
terized byh linearly independent 
onstraints of type (8), say 
i1; : : : ; 
ih where i1 < i2 < : : : < ih.The root of the tree (level 0) 
orresponds to an empty set of 
onstraints. Given anode N(
i1 ; : : : ; 
ih) at level h, its sons are the nodes N(
i1; : : : ; 
ih; 
i) for all possible
hoi
es of i su
h that the following three properties are ful�lled: (i) i > ih, (ii) the h+1
onstraints 
i1; : : : ; 
ih; 
i are linearly independent and (iii) 
onstraint 
i is 
ompatiblewith the 
onstraints 
i1; : : : ; 
ih with respe
t to the 
hoi
e of the values of the variablesxj involved in these 
onstraints. Clearly the maximal depth of the tree T is d. Forea
h leaf of the tree, we 
ompute a point of the system of equations asso
iated to theleaf (these equations result if we require that the inequalities 
hara
terizing the leafare all ful�lled with equality). Note that, if a leaf is at level d, this system of equationshas a unique solution, whi
h is not the 
ase if the leaf is at a level < d. In the latter
ase we simply 
hoose one solution of the system of equations 
orresponding to theleaf under 
onsideration. The points 
omputed in this way 
onstitute the set Y .It remains to be argued that the set Y 
onstru
ted above 
ontains at leastone point of ea
h polyhedron Px;Æ. Let x be �xed and 
onsider a fa
e f of thepolyhedron Px;Æ with smallest dimension d� k (if Px;Æ has extreme points, f will bean extreme point). This fa
e f is 
hara
terized by k linearly independent 
onstraintsof type (8) whi
h are satis�ed at equality, say, 
j1; : : : ; 
jk with j1 < j2 < : : : jk. Byde�nition, the tree T 
ontains the node N(
j1; : : : ; 
jk). If N(
j1; : : : ; 
jk) is a leaf,then by 
onstru
tion of the algorithm, a point of the fa
e f has been 
omputed. IfN(
j1 ; : : : ; 
jk) is not a leaf, then it has a des
endent N(
j1 ; : : : ; 
jk; 
jk+1; : : : ; 
jt)whi
h is a leaf: the point that was 
omputed for this leaf is a point of our fa
e f .The number of leaves in the tree, and hen
e the 
ardinality of Y , is boundedby �j�jd � (observe that the number of leaves is largest if there are no leaves at levels11



< d). The amount of work that has to be done at ea
h node (i.e., either 
he
kingthat the inequalities of that node are linearly independent, or �nding a point of thesystem) 
an be bounded by O(d3), hen
e the time 
omplexity of 
omputing Y is givenby O� dP̀=1 �j�j` �d3� = O�d3 dP̀=1 j�j`� = O �d3 j�jd+1�1j�j�1 � = O(j�jdd3) = O(d3npd).3.4 Impli
it 
onstru
tion of the set Y using strategy S2 to
hoose ÆStrategy S2 will be applied when e
 = 0. Re
all that this means that we set ÆF = 0for all F 2 G. In that 
ase Px;Æ is a polyhedral 
one with origin 
 = (0; : : : ; 0) forall x 2 f0; 1gn. Note that the point 
 itself is not a useful point for in
lusion intothe set Y be
ause it belongs to all Px;Æ. (
 2 Y would result in X(Y ) = f0; 1gn, i.e.,in an exhaustive sear
h over all feasible solutions of CR-QP01). Instead we 
onsiderpoints that are 
lose to 
. These points are on extreme rays (or fa
es of greaterdimension, if no extreme rays exist). Sin
e these fa
es are of dimension � 1, theirnumber is O(j�jd�1) = O(np(d�1)). This allows us to de
rease the time 
omplexityof the pro
edure for 
omputing Y in 
omparison to the 
ase of strategy S1 whereO(j�jd) points had to be investigated. The pri
e we have to pay for this improvementis that we have to 
ope with problems whi
h result from degenera
y.Ea
h point y 2 Y results from a set of 
onstraints of type (8) whi
h have to beful�lled at equality. If for a point y and for sets F 2 G that were not used to de�ney, we have Pj2F (2xj � 1)rj(y) = 0, the point y might not be mu
h more useful than
. This means that we have to take 
are of degenera
y. To that end, a symboli
perturbation method, whi
h is des
ribed next, will be applied.3.4.1 A perturbation methodThe perturbation method whi
h we are going to propose is inspired by an approa
hdes
ribed in the book by Edelsbrunner [9, p. 185{191℄. Let q be the �rst primegreater than d + 1 and set  (j; `) = qd(j+1)�`. Consider the perturbed ve
tors bu`de�ned bybuj̀ = uj̀ + " (j;`) ` = 1; : : : ; d; j = 1; : : : ; nwhere " is a small positive number. Note that this perturbation also a�e
ts theproblem in (2). We are a
tually solving a perturbed version whi
h is obtained by12



repla
ing the ve
tors u` by their perturbed versions bu`, ` = 1; : : : ; d. Let bPx;0 be theperturbed version of Px;0. The polyhedron bPx;0 
ontains all y 2 Rd whi
h ful�llXj2F (2xj � 1)brj(y) � 0 for all F 2 F(x) (9)where brj(y) = 2Pd̀=1 �`buj̀y` for j = 1; : : : ; n.If we had to give a spe
i�
 value to ", this value would probably have to beexponentially small, whi
h would threaten the polynomiality of our algorithm. Itturns out, however, that we 
an perform Step 1 of algorithm A in a modi�ed waysu
h that it is not ne
essary to expli
itly 
ompute the 
andidate points y 2 Y . Thisallows us to refrain from 
hoosing a spe
i�
 value for ". The key observation is thatit suÆ
es to be able to determine the sign of the expressions on the left hand sideof the inequalities (9) de�ning the perturbed polyhedron bPx;0. In Se
tion 3.4.2, weexplain how to 
onstru
t the systems de�ning the 
andidate points y 2 Y . In Se
tion3.4.3, we 
hara
terize the sets F 2 G for whi
h the expressions Pj2F (2xj � 1)brj(y)are non-zero. Se
tion 3.4.4 explains how to determine the sign of the expressionsPj2F (2xj�1)brj(y). Se
tion 3.4.5 dis
usses when the perturbation method should beused.3.4.2 Impli
it 
onstru
tion of the set YConsider again the tree T introdu
ed in Se
tion 3.3. In the rest of Se
tion 3 wewill work with the perturbed problem. A given node of tree T at level h is thus
hara
terized by a system of equationsXj2Ft�(2xj � 1)brj(y) = 0 � = 1; : : : ; h (10)where Ft� 2 G for � = 1; : : : ; h and the values xj, j 2 S�=1;:::;h Ft� , are given.Re
all that in the pro
ess of 
onstru
ting the tree T des
ribed in Se
tion 3.3 werepeatedly need to test a given set of inequalities of type (8) for linear independen
y.Moreover, the expli
it 
onstru
tion of the set Y requires that a system of equationsis solved. This approa
h 
annot be followed if perturbation is used and no spe
i�
value of " is 
hosen. In the following we will demonstrate how these diÆ
ulties 
anbe 
ir
umvented. 13



Suppose we are given the system of equations (10). We asso
iate with thissystem the following simpli�ed system of equations in the new variables zj:Xj2Ft� zj = 0 � = 1; : : : ; h: (11)Obviously, the linear dependen
y of these equations implies the linear dependen
y ofthe equations (10).One of the problems with degenera
y is that there will be leaves of the tree Tat levels < d, whi
h means that there does not exist a unique solution to the set ofequations whi
h de�ne the respe
tive leaf. We are now going to demonstrate that byadding � 1 suitably 
hosen additional 
onstraints, the resulting system of equationswill always have a unique solution.We start with dis
ussing the 
ase of a leaf at level h = d� 1. We augment thesystem (11) by a normalization 
onstraint of the formXj2Ft0 �jzj = 1 (12)where the set Ft0 � f1; : : : ; ng and the 
oeÆ
ients �j; j 2 Ft0 are 
hosen su
h that theequations given by (11){(12) are linearly independent (Ft0 does not need to belong toG; a possible 
hoi
e is Ft0 = fj0g where j0 62 S�=1;:::;h Ft� and �j0 = 1, although thishas the disadvantage to require the �xation of an additional variable xj0). Considerthe system in the variables y` obtained by repla
ing zj by (2xj � 1)brj(y). We shownow that for " suÆ
iently small, this system has always a unique solution.The pra
ti
al importan
e of the subsequent proposition is that the linear in-dependen
y of the system (11){(12) does not depend on " and 
an thus be 
he
kedwithout 
hoosing a spe
i�
 value for ".Proposition 3 Assume that the d equations in the variables zj given by (11){(12)are linearly independent. Then for any 
hoi
e of the values xj; j 2 S�=0;:::;d�1Ft� , andfor " suÆ
iently small, the system in the variables y` given byXj2Ft�(2xj � 1)brj(y) = 0 � = 1; : : : ; d� 1Xj2Ft0 �j(2xj � 1)brj(y) = 1 14



has an unique solution.Proof. Sin
e the equations given by (11){(12) in the variables zj are linearly indepen-dent, this system of equations 
an be put in a triangular form, i.e., there exist numbers�ik for i = 1; : : : ; d, and k = 1; : : : ; n, satisfying �ii = 1 for i = 1; : : : ; d and numbersbi; i = 1; : : : ; d, su
h that the system (11){(12) is equivalent to Pnk=i �ikzjk = bi fori = 1; : : : ; d. The 
orresponding system in the variables y` has then the followingform: dX̀=1 �` nXk=i �ik(2xjk � 1) �uj̀k + " (jk;`)�! y` = bi; i = 1; : : : ; d:Clearly the determinant of the 
oeÆ
ient matrix of this system is a polynomial in". This polynomial 
ontains the term � dQi=1�i�ii(2xji � 1)� " dPi=1 (ji;i) (observe that a
an
ellation of this term is not possible sin
e due to the 
onstru
tion of the perturba-tion there 
annot be another term with the same power of "). Hen
e the polynomial
ontains at least one non-zero term. Consequently, the determinant will be non-zerofor " suÆ
iently small, whi
h implies the 
laim about the unique solvability.The 
ase where the level of the leaf under 
onsideration is h < d�1 is redu
edto the 
ase h = d� 1 by adding d� 1� h additional equations of the form (10), butwith Ft� , � = h + 1; : : : ; d � 1, possibly 
hosen outside G, su
h that the equationsPj2Ft� zj = 0, � = 1; : : : ; d� 1 are linearly independent.We are now prepared to summarize the pro
edure to 
onstru
t the set Yimpli
itly. We again build up the tree T des
ribed in Se
tion 3.3, but there are twoessential di�eren
es. The �rst one relates to the fa
t that instead of 
omputing themembers of the set Y expli
itly, we will work with systems of equations whi
h de�nethe points in Y . The se
ond di�eren
e 
on
erns the fa
t that the leaves of the treehave a depth of � d � 1 (in 
ontrast to � d in Se
tion 3.3). In the following wedistinguish two 
ases: leaves at level d� 1 and leaves at levels < d� 1.We start with the �rst 
ase. A leaf at level d � 1 is 
hara
terized by d � 1equalities of type (10). These equalities de�ne a line L passing through the origin 
,where 
 partitions L into two hal
ines. The addition of the normalization 
onstraintPj2Ft0 �j(2xj�1)brj(y) = 1 has the e�e
t of sele
ting a point lying on one of these twohal
ines. Sin
e the line L is not ne
essarily lying 
ompletely inside the polyhedronbPx;0 (
 might be an extreme point of bPx;0), we also need to sele
t a point whi
h is15



lying on the other hal
ine of L originating at 
. Su
h a point is obtained by addingthe normalization 
onstraintPj2Ft0 �j(2xj�1)brj(y) = �1 to the system of equationsde�ning the line L. We end up with two systems of equations, representing two pointsyL1 and yL2 , one of whi
h is guaranteed to belong to bPx;0. By in
luding both pointsinto the set Y we are on the safe side.The se
ond 
ase 
on
erns leaves at levels h < d�1. In su
h a 
ase, we �rst addd � 1 � h arti�
ial 
onstraints as explained above. We end up with d � 1 equationswhi
h are linearly independent. These equations again de�ne a line L through theorigin, but in that 
ase it is guaranteed that the line L lies 
ompletely inside of thepolyhedron bPx;0 (whi
h has no extreme points in this 
ase). Thus it suÆ
es to 
hoosearbitrarily one of the two hal
ines of L originating at 
 and to sele
t a point on thathal
ine. Su
h a point is de�ned by taking the d � 1 
onstraints de�ning the line Land adding the normalization 
onstraint Pj2Ft0 �j(2xj � 1)brj(y) = 1.>From the dis
ussion above it follows that the set Y , with whi
h we end up,will indeed have 
ardinality O(j�jd�1), in 
ontrast to O(j�jd) in the 
ase handled inSe
tion 3.3.3.4.3 Chara
terizations of sets F with Pj2F(2xj � 1)brj(y) 6= 0In this se
tion we show that the proposed perturbation method eliminates the prob-lems 
aused by degenera
y. Spe
i�
ally, the perturbation guarantees that the numberof sets F 2 G for whi
h Pj2F (2xj � 1)brj(y) = 0 holds is suÆ
iently small. (Re
allthat this property is required to end up with a set X(Y ) of manageable size.)The following two results 
hara
terize the sets F with the desired propertyPj2F (2xj � 1)brj(y) 6= 0.Proposition 4 Let ~y be a point of Y whi
h is impli
itly de�ned by the system ofequationsPj2Ft� (2xj�1)brj(y) = 0 for � = 1; : : : ; d�1 augmented by a normalization
onstraint whi
h is not listed here. Let Ftd � f1; : : : ; ng (not ne
essarily in G). Ifthe equations Pj2Ft� zj = 0, � = 1; : : : ; d, are linearly independent, then we havePj2Ftd(2xj � 1)brj(~y) 6= 0.Proof. The proof is similar to that of Proposition 3. We �rst write the systemPj2Ft� zj = 0, � = 1; : : : ; d, as a triangular system, then repla
e the variables zj by(2xj�1)Pd̀=1 �` �uj̀ + " (j;`)� y` and 
onsider the determinant of the resulting system16



in the variables y`. This determinant is again a polynomial in " with at least one non-zero term, hen
e the determinant is non-zero for " suÆ
iently small. Therefore theonly solution of the system of d equations is the point 
 = (0; : : : ; 0). Sin
e ~y is notequal to 
 and satis�es the �rst d � 1 equations, ~y 
annot satisfy the last equationgiven by Pj2Ftd(2xj � 1)brj(~y) = 0 whi
h proves the 
laim.Re
all that when determining a point y, we had to �x the values of some ofthe xj. Denote by Jy the set of indi
es j 2 f1; : : : ; ng with the property that thevalues xj have not been used to de�ne y.Corollary 1 For all F � Jy and all x 2 f0; 1gn, we have Pj2F (2xj � 1)brj(y) 6= 0.Proof. The assumption F � Jy implies that the equation Pj2F zj = 0 only involvesvariables zj with indi
es j whi
h are not appearing in the equations used to determiney. Consequently Proposition 4 
an be applied whi
h yields the desired result.3.4.4 Determination of the sign of Pj2F(2xj � 1)brj(y)Assume that the point y 2 Y is impli
itly de�ned by the systemdX̀=1 �`0�Xj2Ft�(2xj � 1) �uj̀ + " (j;`)�1A y` = 0 � = 1; : : : ; d� 1 (13)dX̀=1 �`0�Xj2Ft0 �j(2xj � 1) �uj̀ + " (j;`)�1A y` = 1 (14)Let F � Jy. We now explain how to determine the sign of Pj2F (2xj � 1)brj(y).To simplify the notation, we set Ftd = F (re
all, however, that F does not ne
-essarily belong to G). By Cramer's Rule, we have y` = detM`(")detM(") for ` = 1; : : : ; d, whereM(") denotes the 
oeÆ
ient matrix of the system of equations given by (13){(14) andM`(") denotes the matrix obtained from M(") by repla
ing the `-th 
olumn of M(")by the 
olumn ve
tor (0; : : : ; 0; 1)t. Note that detM(") is non-zero by Proposition 3.Let �0k` = �` �Pj2Ftk (2xj � 1) �uj̀ + " (j;`)�� for k = 0; : : : ; d and ` = 1; : : : ; d.We are interested in the sign of the expression Pj2Ftd(2xj � 1)brj(y). This17



expression is equal to	 = Xj2Ftd(2xj � 1)brj(y) = dX̀=1 �0d`y` = dX̀=1 �0d`detM`(")detM(") :We now develop the determinant of the matrixM`(") with respe
t to its `-th 
olumn.This leads to detM`(") = (�1)d+` detM 00` (") whereM 00` (") is the matrix obtained fromM`(") by deleting the `-th 
olumn and the last row. Hen
e	 = dX̀=1 (�1)d+`�0d`detM 00` (")detM(") = detM 00(")detM(")where M 00(") is the matrix with elements �0k`, k; ` = 1; : : : ; d. Pro
eeding in a similarway as in the proof of Proposition 3, it 
an be shown detM 00(") is non-zero for "suÆ
iently small. Sin
e both detM(") and detM 00(") are polynomials in ", theirsign is determined by the sign of their �rst non-zero 
oeÆ
ient, starting with theterms of smallest exponent. We explain in the following how to determine the signof detM 00("). The 
ase of detM(") is handled analogously. The exponents of "in detM 00(") are of the form P(j;`)2S �(j; `) = P(j;`)2S qjd+d�` for all subsets S of�S�=1;:::;d Ft�� � f1; : : : ; dg with 
ardinality � d. Sin
e p is an upper bound on jF jfor all F 2 G, it follows that j 
an take at most pd distin
t values whi
h implies thatthe expression  (j; `) = (j + 1)d � `, (j; `) 2 S, 
an take at most pd2 + d distin
tvalues. The number of possible values for the exponents of " is therefore bounded byPdk=1 �pd2+dk �. For ea
h possible exponent ! of ", the 
oeÆ
ient of "! is the sum of atmost d subdeterminants of M 00("), and 
an thus be 
omputed in O(d4) time. Sin
ed is a 
onstant, the sign of Pj2F (2xj � 1)brj(y) 
an therefore be 
omputed in O(1)time (note, however, that the 
onstants hidden in this asymptoti
 notation in
reaserapidly with d and p).3.4.5 Appli
ability of the perturbation methodIn order to be able to apply the perturbation method, we must haveXi;j2F baij � 0 for all F 2 G (15)for " suÆ
iently small, where bA is the perturbed matrix de�ned by baij =Pd̀=1 �`buìbuj̀for all i; j. (Note that if an inequality in (15) were violated, it would not be possible18



to 
hoose Æ = 0.) The 
ondition (15) is guaranteed to hold for small values of ", onlywhen Pi;j2F aij < 0 holds for all F 2 G.We 
lose the dis
ussion of the perturbation approa
h by the remark that inprin
iple this approa
h 
an also be applied in the general 
ase, i.e., e
 6= 0. The
andidate set Y 
an be 
omputed in O(j�jd�1) time in the 
ase when e
 6= 0, butthe number of indi
es i su
h that e
i 6= 0 is bounded by a 
onstant. In that 
ase,we distinguish between polyhedra Px;Æ that 
ontain the origin 
, and polyhedra thatdo not 
ontain 
. For polyhedra that 
ontain 
, we 
ompute (impli
itly) points onfa
es of dimension � 1. For polyhedra that do not 
ontain 
, we 
ompute 
andidateextreme points, but by restri
ting our attention to points that satisfy at equality atleast one inequality separating 
. Sin
e the number of these inequalities is boundedby a 
onstant, these 
andidate extreme points 
an also be 
omputed in O(j�jd�1)time. Although the perturbation method 
an also be applied in the 
ase e
 6= 0, it isnot re
ommendable to apply it for at least 3 reasons: removing the degenera
y resultsin an in
rease of the 
ardinality of Y ; the hidden 
onstants in the 
omplexity boundin
rease when perturbation is used; and �nally, perturbation may destroy a possiblesymmetry in the obje
tive fun
tion, implying that algorithm A 
annot any longer beused to obtain the set of all optimal solutions.In the remaining part of this paper, we generally assume that the perturbationmethod is used when e
 = 0, and not used when e
 6= 0.3.5 Constru
tion of the set X(y)In order to be able to handle the 
ases with and without appli
ation of the perturba-tion method in a uni�ed way, we introdu
e the expressions �j(y) for j = 1; : : : ; n andy 2 Y , where �j(y) equals brj(y) if perturbation is used and equals rj(y) otherwise.Let y 2 Y be given expli
itly or impli
itly (by its set of de�ning equations).In order to 
onstru
t the set X(y) we need to 
ompute the set of all x 2 f0; 1gn su
hthat y 2 Px;Æ (or its perturbed version bPx;0). This task amounts to �nding all pointsx 2 f0; 1gn whi
h satisfyXj2F (2xj � 1)�j(y) � ÆF for all F 2 F(x)where ÆF = 0 for all F 2 G in the perturbed 
ase.19



Our method for solving this task is largely dependent on the 
hoi
e of theneighborhood fun
tion F . We therefore postpone the further dis
ussion of the 
om-putation of the sets X(y) to Se
tions 4 and 5, where spe
i�
 neighborhoods fun
tionsfor the 
ases C1 and C2 will be introdu
ed.3.6 Constru
tion of the set of optimal solutionsLet X(Y ) =  Sy2Y X(y)! and X = X(Y ) [ fx : F(x) = ;g: the optimal solutions toproblem (2) are obtained by evaluating the obje
tive fun
tion f for all points of X,and keeping the points of smallest value. The 
omplexity of this phase is O(jXjnd).Note that we 
an also 
onstru
t the set of all lo
al minima for the neighborhoodfun
tion F under 
onsideration by testing all points in X and listing those whi
h arelo
al minima. The running time of this approa
h is jXj times the time needed to
he
k if a given point is a lo
al minimum with respe
t to F .A word of 
aution is in order when perturbations are used. We then have noguarantee to obtain all global optima, or all lo
al minima, and will in general have tobe satis�ed with a single global optimum.3.7 Some graph theoreti
al de�nitionsThe following de�nitions will be needed in the remainder of the paper (for furtherdetails see e.g. Berge [3℄).A hypergraph H = (VH ; EH) is de�ned by a set VH of verti
es and a 
olle
tionEH of subsets of VH 
alled edges. For notational 
onvenien
e assume VH = f1; : : : ; ng.The size of an edge F 2 EH is the 
ardinality of F , i.e., jF j. An edge of size 1 is
alled a loop. Observe that a hypergraph H be
omes a graph if all edges are of size1 or 2. A hypergraph is said to be of bounded edge size if there exists a 
onstant ksu
h that jF j � k for all F 2 EH .Let H = (VH ; EH) be a hypergraph and let W � VH . The set W indu
es asubhypergraph of H, the so-
alled indu
ed subhypergraph H[W ℄ = (W;EH[W ℄) withvertex set W and edge set EH[W ℄ whi
h only 
ontains those edges F 2 EH whi
hare subsets of W . As a spe
ial 
ase the notion of a indu
ed subgraph arises. LetG = (V;E) be an undire
ted graph and W � V , then G[W ℄ = (W;EW ) with EW =ffi; jg 2 E : i; j 2 Wg is 
alled the subgraph of G indu
ed by the vertex set W .20



A stable set or independent set of H = (VH ; EH) is a subset W of VH su
h thatno subset of W belongs to EH . Note that a subset of a stable set is still a stable set.Given a dire
ted graph D = (V;ED), we de�ne the partial order � whi
h isindu
ed by D on V as follows: i � j, i; j 2 V if and only if (i; j) 2 ED.4 A polynomial time algorithm for spe
ial 
ase C1In this se
tion, we 
onsider the spe
ial 
ase C1 of problem CR-QP01 (
f. Se
tion 1).This 
ase arises for matri
es A of rank d whi
h additionally satisfy the followingpropertyXi;j2F aij < 0 for all F 2 EH (16)where H = (VH ; EH) is a hypergraph with jVHj = n. Our main result is the following:Theorem 1 Assume that the following 
onditions are satis�ed:(a) H is a hypergraph of bounded edge size.(b) The largest stable set in H is of size O(logn)(
) The number of maximal stable sets in H is polynomial in n.Then the CR-QP01 stated in the form (2) 
an be solved in polynomial time whenrestri
ted to the 
lass of matri
es ful�lling property (16).Theorem 1 will be proved in the 
ourse of this se
tion.4.1 De�nition of the neighborhood fun
tion used for 
ase C1For dealing with 
ase C1, we need a neighborhood fun
tion F . To de�ne F wepro
eed as follows. Let H = (VH ; EH) be a hypergraph and let x 2 f0; 1g. LetHx0 = H[V x0 ℄ and Hx1 = H[V x1 ℄, respe
tively, denote the subhypergraphs of H whi
hare indu
ed by the vertex sets V x0 and V x1 , respe
tively, where V x0 = fi 2 VH : xi = 0gand V x1 = fi 2 VH : xi = 1g. To ea
h x 2 f0; 1gn we now asso
iate the set F(x)21



whi
h de�nes the neighbors of x by taking F(x) to be the union of the edges of thesubhypergraphs Hx0 and Hx1 . In other words, x0 2 f0; 1gn is a neighbor of x if it 
anbe obtained from x by sele
ting an edge F 2 EH su
h that the 
omponents xi, i 2 F ,have the same value and then 
ipping the value of these 
omponents. Observe thatG = Sx2f0;1gn F(x) = EH .Let Æ be 
hosen either a

ording to strategy S1, i.e., su
h that Pi;j2F aij � ÆF < 0holds for all F 2 G, or a

ording to strategy S2, i.e., ÆF = 0 for all F 2 G (thisstrategy is applied for e
 = 0).Using the neighborhood fun
tion F introdu
ed above, the de�ning inequali-ties (8) of the polyhedron Px;Æ (or the inequalities (9) de�ning its perturbed version)simplify toXj2F �j(y) � ÆF for all F 2 F(x) su
h that xi = 1 for all i 2 F (17)�Xj2F �j(y) � ÆF for all F 2 F(x) su
h that xi = 0 for all i 2 F (18)where again �j(y) equals brj(y) or rj(y) depending on whether or not perturbation hasbeen applied (
f. Se
tion 3.5).4.2 Constru
tion of the set X(y) for 
ase C1We assume that the set Y has already been 
omputed (either expli
itly or impli
itly,see Se
tions 3.3 and 3.4, respe
tively). In order to 
ompute the set X(y) for a giveny 2 Y , we need to �nd all points x 2 f0; 1gn su
h that y 2 Px;Æ (
f. Se
tion 3.2),whi
h in our 
ase means the set of all x 2 f0; 1gn su
h that the system of inequalitiesgiven by (17){(18) is satis�ed. Re
all that in the 
ourse of 
omputing y, the valuesof some xj have already been �xed to either 0 or 1. Let Jy again denote the setof the indi
es j 2 f1; : : : ; ng for whi
h the value of xj has not yet been �xed. Forj 2 f1; : : : ; ng n Jy, let xyj denote the already �xed value of the j-th 
omponent ofx. Clearly, we do not have any freedom in 
hoosing the values xyj . Thus the task of
omputing the set X(y) amounts to �nding all possibilities for 
hoosing the values ofxj for j 2 Jy su
h that y belongs to Px;Æ.Let H[Jy℄ denote the subhypergraph of H whi
h is indu
ed by the vertex setJy � VH . If x 2 f0; 1gn satis�es the system of inequalities (17){(18), then it also22



satis�es the following set of 
onditionsXi2F �i(y) � 0 for all F 2 EH[Jy℄ su
h that xi = 1 for all i 2 F (19)Xi2F �i(y) > 0 for all F 2 EH[Jy℄ su
h that xi = 0 for all i 2 F : (20)To prove this 
laim, we distinguish two 
ases depending on whi
h strategy has beenused to 
hoose Æ. If S1 has been applied, we have ÆF < 0 for all F 2 G, so the 
laimfollows dire
tly from (17){(18). If S2 has been applied, inequality (20) follows fromCorollary 1.Consequently, the task to 
ompute X(y) redu
es to the sear
h for all partitions(Oy; Zy) of the set Jy su
h thatXi2F �i(y) � 0 for all F 2 EH[Oy℄ and Xi2F �i(y) > 0 for all F 2 EH[Zy℄: (21)Su
h partitions will be 
alled feasible partitions of Jy. Ea
h feasible partition leadsto a point x 2 X(y) in the following way:xj = 8<: 0 for j 2 Zy1 for j 2 Oyxyj for j 2 Jy (22)(The names Oy and Zy have been 
hosen to re
e
t that xj is set to one for j 2 Oy,and to zero for j 2 Zy.)It is easy to see that the set of feasible partitions is nonempty sin
e the partition( eOy; eZy) with eOy = fi 2 Jy : �i(y) � 0g and eZy = fi 2 Jy : �i(y) > 0g is 
learlyfeasible (note that if perturbation is used, we have to use the te
hnique des
ribed inSe
tion 3.4.4 to determine the sign of �i(y)).Our problem now is to �nd all feasible partitions of Jy. The following lemmaturns out to be helpful in solving this problem.Lemma 2 Let ( eOy; eZy) be the initial feasible partition de�ned above and let (Oy; Zy)be an arbitrary partition of Jy. Then (Oy; Zy) is a feasible partition if the followingtwo 
onditions are ful�lled(i) U0!1y = eZy \Oy is a stable set in the indu
ed hypergraph H[ eZy℄.23



(ii) U1!0y = eOy \ Zy is a stable set in the indu
ed hypergraph H[ eOy℄.Proof. We prove the statement in (i). The statement in (ii) is proved analogously.Assume that U0!1y is not a stable set in H[ eZy℄, i.e., it 
ontains an edge F of thehypergraph H[ eZy℄. Then by the feasibility of ( eOy; eZy) it follows thatPi2F �i(y) > 0.Therefore, we 
annot have Pi2F �i(y) � 0, whi
h shows that (Oy; Zy) 
annot bea feasible partition sin
e the �rst 
ondition in (21) would be violated (note thatU0!1y � Oy). We thus arrived at a 
ontradi
tion whi
h implies the 
laim (i).Lemma 2 and the dis
ussion above motivate the following approa
h for 
om-puting the set X(y) (a
tually a superset of X(y) is determined be
ause (17){(18)have been repla
ed by (19){(20)):Algorithm B to 
ompute X(y) :1. Compute the initial feasible partition ( eOy; eZy). Compute the point ~x asso
iatedwith ( ~Oy; ~Zy) a

ording to (22). Add ~x to X(y).2. Enumerate the sets S(H[ eZy℄) and S(H[ eOy℄) whi
h denote the sets of all stablesets in the indu
ed hypergraphs H[ eZy℄ and H[ eOy℄), respe
tively. (Note thatS(H[ eZy℄) and S(H[ eOy℄) are subsets of the set of all stable sets of the hypergraphH.)3. With ea
h (S0; S1) 2 S(H[ eZy℄)� S(H[ eOy℄), we asso
iate the new feasible par-tition (Oy; Zy) with Oy = eOy [ (S0 n S1) and Zy = eZy [ (S1 n S0). Compute thepoint x asso
iated with (Oy; Zy) a

ording to (22). Add x to X(y).Note that the running time of algorithm B depends heavily on the time neededby the se
ond step in whi
h all stable sets of two subhypergraphs of H need to beenumerated. Eiter and Gottlob [10℄ have proposed an algorithm whi
h lists all stablesets of a hypergraph of bounded edge size in time polynomial in the size of the output(the existen
e of su
h an algorithm without the assumption of bounded edge size isan open question). The approa
h of [10℄ 
an be applied in our 
ase, but in order toarrive at a polynomial overall running time for the pro
edure for 
omputing X(y),we need to make sure that the size of the output depends polynomially on the sizeof the input. This leads to the following suÆ
ient 
ondition for the polynomiality ofalgorithm B.Condition 1 The sum of the 
ardinality of all stable sets of H is polynomial in n.24



Simpli�
ations are possible when H is a graph. For graphs a wealth of papersare available whi
h present algorithms for listing all stable sets of H in time poly-nomial in the size of the output, see, e.g., [5, 6, 8, 16, 17, 18, 22℄. The following
ondition suÆ
es to guarantee the polynomiality of algorithm B for the spe
ial 
aseof graphs. This 
ondition is weaker than Condition 1 and is easier to 
he
k.Condition 2 The degree of any vertex in H is at least n � b logn, where b is a
onstant.Observe that this 
ondition ensures that the number of stable sets in H = (VH ; EH) ispolynomial in n. This is true be
ause the number of stable sets 
ontaining the vertexi 2 VH is bounded by 2b log n = nb whi
h implies that the total number of stable setsis bounded by n � nb = nb+1.Now the proof of Theorem 1 is almost 
ompleted. We have already argued inSe
tions 3.3 and 3.4 that the 
omputation of the set Y , i.e., the �rst step of the generi
algorithm A presented in Se
tion 3.2, 
an be implemented to run in polynomial time.Now 
onsider the running time of the se
ond step (
omputation of the setsX(y)). Sin
e the sum of the 
ardinalities of all subsets of a stable set of 
ardinalitym is given by Pmk=1 �mk�k = m2m�1, the sum of the 
ardinalities of all stable sets isbounded by �(N;m) = Nm2m�1, where N denotes the number of maximal stablesets and m denotes the size of the largest maximal stable set. The number �(N;m)is bounded from above by a polynomial in n provided that N is a polynomial in nand m = O(logn). This shows that the 
onditions of Theorem 1 imply Condition 1,and hen
e the se
ond step of algorithm A 
an be implemented in polynomial time aswell. It remains to dis
uss the 
omplexity of the third and last step of algorithm A.To arrive at an overall polynomial time algorithm we need to make sure that the setof points x su
h that F(x) = ; 
an be 
onstru
ted in polynomial time. Observe thatF(x) = ; if and only if VH , the vertex set of H 
an be partitioned into 2 stable sets.Consequently Condition 1 also ensures that the set of points x su
h that F(x) = ;
an be 
onstru
ted in polynomial time.5 A polynomial time algorithm for spe
ial 
ase C2In this se
tion we are going to deal with the spe
ial 
ase C2 of problem CR-QP01 (
f.Se
tion 1). Let G = (V;E) be an undire
ted graph the edges of whi
h are partitioned25



into two sets E+(G) and E�(G), i.e. E+(G) \E�(G) = ; and E+(G) [E�(G) = E.Let G+ = (V;E+(G)) and G� = (V;E�(G)), respe
tively, denote the subgraphs ofG whi
h only 
ontain the edges in E+(G) and in E�(G), respe
tively. If G0 is asubgraph of G, let E+(G0) denote the subset of edges in E+(G) whi
h also belong toG0. E�(G0) is de�ned analogously.Re
all that the spe
ial 
ase C2 arises for matri
es A of rank d whi
h addition-ally satisfy the following 
onditions:aii + ajj + 2aij < 0 for all fi; jg 2 E+(G) (23)aii + ajj � 2aij < 0 for all fi; jg 2 E�(G): (24)The main result of this se
tion is the following:Theorem 2 Assume that the following 2 
onditions are satis�ed(a) The number of maximal stable sets in the graph G+ is polynomial in n.(b) For ea
h maximal stable set S of G+ and for ea
h possible orientation ~G�[S℄ ofthe indu
ed subgraph G�[S℄, the number of extensions of the partial order on Sindu
ed by the dire
ted graph ~G�[S℄ to a total order on S is polynomial in n.Then the CR-QP01 stated in the form (2) 
an be solved in polynomial time whenrestri
ted to the 
lass of matri
es ful�lling properties (23){(24).5.1 De�nition of the neighborhood fun
tion used for 
ase C2The neighborhood fun
tion F asso
iated with 
lass C2 is impli
itly de�ned as follows:x0 2 f0; 1gn is a neighbor of x 2 f0; 1gn if x and x0 di�er in exa
tly two 
omponentsi and j, where we additionally require that the following two 
onditions are ful�lled:� fi; jg 2 E�(G) implies xi = 1� xj (= 1� x0i = x0j).� fi; jg 2 E+(G) implies xi = xj (= 1� x0i = 1� x0j).Note that in this 
ase we have G = Sx2f0;1gn F(x) = E.26



Let ÆF for F = fi; jg 2 G be su
h that0 > ÆF � � aii + ajj � 2aij if fi; j) 2 E�(G)aii + ajj + 2aij if fi; jg 2 E+(G):When e
 = 0, we also allow the 
hoi
e ÆF = 0 for all F = fi; jg 2 G.Using the neighborhood fun
tion F introdu
ed above, the de�ning inequali-ties (8) of the polyhedron Px;Æ (or the inequalities (9) de�ning its perturbed versionbPx;0) simplify to�i(y) + �j(y) � ÆF for all F = fi; jg 2 E+(G) su
h that xi = xj = 1 (25)��i(y)� �j(y) � ÆF for all F = fi; jg 2 E+(G) su
h that xi = xj = 0 (26)�i(y)� �j(y) � ÆF for all F = fi; jg 2 E�(G) su
h that xi = 1; xj = 0 (27)5.2 Constru
tion of the set X(y) for 
ase C2We make the same assumptions than in the �rst paragraph of Se
tion 4.2. Assumethat Y has already been 
omputed and let y 2 Y . Let Jy again denote the set of theindi
es j 2 f1; : : : ; ng for whi
h the value of xj has not been �xed in the 
ourse of
omputing y. For j 2 f1; : : : ; ngnJy, let xyj denote the already �xed value of the j-th
omponent of x. Given a partition (Oy; Zy) of the set f1; : : : ; ng n Jy, we say thatx 2 f0; 1gn is indu
ed by the partition (Oy; Zy) if x is set a

ording to (22).It 
an be assumed without loss of generality that�i(y)� �j(y) 6= 0 for all fi; jg 2 E�(G[Jy℄): (28)Indeed, by Corollary 1, this is true when ÆF = 0 for all F 2 G. When ÆF < 0 andwe have �i(y) = �j(y) for F = fi; jg 2 E�(G[Jy℄), then we must ne
essarily havexi = xj (otherwise property (27) would be violated). Therefore, we 
an repla
e G bythe redu
ed graph whi
h results from G by shrinking the two verti
es i and j intoa single new vertex and removing the edge fi; jg. If ne
essary, this shrinking step isrepeated. We will end up with a redu
ed graph, whi
h for simpli
ity is again 
alledG, where �i(y) 6= �j(y) holds for all fi; jg 2 E�(G[Jy℄), whi
h implies (28).Using assumption (28), it follows that if x satis�es (25){(27), then it alsosatis�es the following system of inequalities:�i(y) + �j(y) � 0 for all fi; jg 2 E+(G[Jy℄) su
h that xi = xj = 1 (29)�i(y) + �j(y) > 0 for all fi; jg 2 E+(G[Jy℄) su
h that xi = xj = 0 (30)�i(y)� �j(y) < 0 for all fi; jg 2 E�(G[Jy℄) su
h that xi = 1; xj = 0 (31)27



Instead of 
omputing the set X(y) of points x 2 f0; 1gn su
h that y 2 Px;Æ,we 
ompute a superset X 0(y) of X(y) whi
h 
ontains all points x 2 f0; 1gn whi
hful�ll (29){(31). We will pro
eed in a similar fashion as in Se
tion 4.2.An initial point ex in X 0(y) 
an be 
omputed as follows: Let eOy = fj 2 Jy :�j(y) � 0g and let eZy = fj 2 Jy : �j(y) > 0g. This partition indu
es a pointex 2 f0; 1gn. All other points in X 0(y) are obtained by 
ipping the values of exj fora subset of indi
es j from eOy [ eZy. More spe
i�
ally, let (Oy; Zy) be an arbitrarypartition of f1; : : : ; ng n Jy. De�ne U0!1y = eZy \ Oy and U1!0y = eOy \ Zy (these sets
ontain the indi
es j for whi
h the value of exj will be 
ipped).In order to guarantee that the partition (Oy; Zy) leads to a point in X 0(y), thefollowing properties have to be ful�lled with respe
t to the set U0!1y :� U0!1y must be a stable set of the indu
ed subgraph G+[ eZy℄; otherwise prop-erty (29) would be violated by the point x 2 f0; 1gn whi
h is indu
ed by(Oy; Zy). (The proof of this 
laim is done along the lines of the similar proof inSe
tion 4.2).� Observe that by (31), x must satisfyxi � xj for all fi; jg 2 E�(G[Jy℄) su
h that �i(y)� �j(y) < 0 (32)(re
all again that �i(y) 6= �j(y) for all fi; jg 2 E�(G[Jy℄)). Let S be a maximalstable set of G+[ eZy℄ su
h that U0!1y � S. Observe that the point x 2 f0; 1gnindu
ed by the partition (Oy; Zy) ful�lls xj = 1 for all j 2 U0!1y (those 
ompo-nents 
hange their value from 0 to 1 when moving from ( eOy; eZy) to (Oy; Zy))and xj = 0 for all j 2 S n U0!1y (those 
omponents keep their original value 0).Clearly U0!1y must be su
h that the following relaxation of (32) is ful�lled:xi � xj for all fi; jg 2 E�(G[Jy \ S℄) su
h that �i(y)� �j(y) < 0 (33)Analogous requirements are posed for the set U1!0y .We propose the following pro
edure to 
ompute X(y) (a
tually a superset ofX(y)).Algorithm B0 to 
ompute X(y) :1. Compute the initial feasible partition ( eOy; eZy) and the point ~x it indu
es. Add~x to X(y). 28



2. Enumerate the sets S(G+[ eZy℄) and S(G+[ eOy℄) whi
h denote the sets of all max-imal stable sets in the indu
ed graphs G+[ eZy℄ and G+[ eOy℄, respe
tively. (Notethat S(G+[ eZy℄) and S(G+[ eOy℄) are subsets of the set of all maximal stable setsof the graph G+.)3. For ea
h S0 2 S(G+[ eZy℄), 
onstru
t the set XS0 of all solutions to the inequalitysystem (33) resulting for S = S0. Similarly, for ea
h S1 2 S(G+[ eOy℄), 
onstru
tthe set XS1 of all solutions to the inequality system (32) resulting for S = S1.4. For ea
h (S0; S1) 2 S(G+[ eZy℄)� S(G+[ eOy℄) perform the following steps:For ea
h xS0 2 XS0 and xS1 2 XS1, 
ompute the point x de�ned as follows:xj = 8>>>>><>>>>>: xS0j for j 2 S0xS1j for j 2 S10 for j 2 eZy n S01 for j 2 eOy n S1xyj for j 2 Jy (34)Add x to X(y).The running time of algorithm B0 is determined by steps 2 and 3. Due to
ondition (a), step 2 
an be performed in polynomial time by one of the variousalgorithms that enumerate stable sets, while the polynomiality of step 3 results from
ondition (b).In order to 
omplete the proof of Theorem 2, it remains to be shown that theset of points x 2 f0; 1gn su
h that F(x) = ; 
an be 
omputed in polynomial time.From the de�nition of the neighborhood fun
tion F , it follows that if F(x) = ;, thenthe following two properties are ful�lled:� V0 = fi 2 V : xi = 0g and V1 = fi 2 V : xi = 1g are two stable sets of thegraph G+.� There are no edges in E�(G) 
onne
ting a vertex in V0 with a vertex in V1.In parti
ular any 
onne
ted 
omponent of G� is 
ompletely 
ontained in either V0or in V1. The existen
e of a point x su
h that F(x) = ; 
an hen
e be 
he
ked asfollows: First, 
onstru
t the list of 
onne
ted 
omponents of G�, and enumerate theset of all maximal stable sets of the graph G+. Then 
he
k for ea
h pair (S; S 0) ofmaximal stable sets of G+ su
h that S [ S 0 = V , if there exists an assignment of the29




onne
ted 
omponents of G� to the stable sets S and S 0 su
h that ea
h 
onne
ted
omponent is 
ompletely in
luded in the stable set to whi
h it has been assigned. Inthe aÆrmative 
ase, the point x 2 f0; 1gn with xi = 1 for i 2 S and xi = 0 for i 2 S 0satis�es F(x) = ;. Otherwise, we have F(x) 6= ; for all x 2 f0; 1gn.On
e the existen
e of a point �x 2 f0; 1gn with no neighbors has been es-tablished, the set of all x with this property 
an by found as follows: We 
onsiderall partitions of the set of 
onne
ted 
omponents of G� into two parts and 
he
k ifthe two parts of the partition de�ne stable sets of the graph G+. It remains to beshown this 
an be done in polynomial time. Denote by n�
 the number of 
onne
ted
omponents of G� and let (V 0; V 1) be the partition of V into two stable sets whi
h
orresponds to �x, i.e. V 0 = fi 2 V : �xi = 0g and V 1 = fi 2 V : �xi = 1g. Supposethat V 0 is the stable set that 
ontains the largest number of 
onne
ted 
omponents:this number of 
omponents is at least equal to n�
2 . It follows that for ea
h partialorder indu
ed by an orientation of the edges of E�(G[V 0℄), the number of possibleextensions to a total order is at least 2n�
2 . By the assumption of Theorem 2, thenumber of extensions is bounded by a polynomial in n, say p2(n), hen
e p2(n) � 2n�
2and therefore n�
 � 2 log p2(n). It follows that the number of partitions we have toexamine is at most 2n�
 � (p2(n))2, i.e., polynomial in n. This 
on
ludes the proof ofTheorem 2.6 Comparison with the algorithm of Allemand,Fukuda, Liebling, and SteinerIn their paper [1℄, Allemand, Fukuda, Liebling, and Steiner propose a polynomialalgorithm for solving problem (2) when there is no linear term (i.e., 
 = 0) andthe matrix A is negative semide�nite (i.e., �` < 0 for ` = 1; : : : ; d if a spe
tralde
omposition of A is used, see the explanation in Se
tion 1 for further details).The algorithm of Allemand et al. involves the enumeration of the extremepoints of a spe
ial polytope, 
alled zonotope. The reader interested into the pra
ti
alimplementation of the method of Allemand et al. is re
ommended to read the re
entpaper of Ferrez, Fukuda, and Liebling [11℄ where an improved method for enumeratingthe extreme points of the zonotope is proposed.
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6.1 Method of Allemand, Fukuda, Liebling, and SteinerIn this se
tion we brie
y des
ribe the method of Allemand et al. [1℄ in a slightly moregeneral framework. We are going to 
onsider the problem:minx2f0;1gn f(x) = �0 + hu0; xi+ dX̀=1 �` ��` + hu`; xi�2 :The 
ase treated by Allemand et al. arises by setting u0 = 0 and �` = 0 for all` = 0; : : : ; d.Consider the mapping T from Rn to Rd+1 that transforms a point x into thepoint T (x) = (�0 + hu0; xi; : : : ; �d + hud; xi). The image of the hyper
ube [0; 1℄n isa spe
ial polytope Qz of Rd+1 , 
alled zonotope. The 
ru
ial observation is that Qzhas O(nd) extreme points, whi
h 
an be 
omputed in O(nd) time (see Allemand etal. [1℄; note that in the spe
ial 
ase treated in [1℄ the zonotope is d� rather than(d+1)-dimensional). The algorithm in [1℄ evaluates the expression z0+Pd̀=1 �` (z`)2for ea
h extreme point z = (z0; : : : ; zd) of Qz and keeps the points of smallest value.Observe that, while ea
h extreme point of Qz is the image of some point x 2 f0; 1gn,not all points in f0; 1gn are transformed into an extreme point of Qz. Therefore, thealgorithm works 
orre
tly only if the optimal solution 
an be shown to be among thepoints x 2 f0; 1gn 
orresponding to an extreme point of Qz. Allemand et al. observedthat this property is true when the matrix A is negative semide�nite by exploitingthe 
on
avity of the obje
tive fun
tion. The next lemma shows that the approa
h ofAllemand et al. works for a larger 
lass of instan
es of the CR-QP01.Proposition 5 Let I be an instan
e of the problem CR-QP01 with the property thatall optimal solutions of the 
ontinuous relaxation of instan
e I are integral. Then thealgorithm of Allemand et al. solves the instan
e I to optimality.Proof. We are going to show that if the algorithm of Allemand et al. fails, then thereexists an optimal solution of the 
ontinuous relaxation that is fra
tional, 
ontradi
tingthe assumptions of the theorem.Let x� be an optimal solution of problem CR-QP01 that is not found by thealgorithm of Allemand et al. It follows that the image z� = T (x�) of x� underthe mapping T is not an extreme point of the zonotope Qz. Therefore, z� 
an bewritten as a 
onvex 
ombination of t � 2 extreme points of Qz, say z(1); : : : ; z(t). Let�(j) 2 f0; 1gn be su
h that z(j) is the image of �(j) under T , i.e., z(j) = T (�(j)) for31



j = 1; : : : ; t. Hen
e, there exists a real ve
tor � = (�1; : : : ; �t) � 0 with Ptj=1 �j = 1su
h thatz�̀ = tXj=1 �jz(j)` = tXj=1 �j ��` + hu`; �(j)i�= �` +*u`; tXj=1 �j�(j)+ ` = 0; : : : ; d:But thenPtj=1 �j�(j) is a feasible solution of the 
ontinuous relaxation with the sameobje
tive fun
tion value than x�. It follows that the 
ontinuous relaxation has at leastone optimal solution that is fra
tional.Observe that the 
lass of instan
es of the CR-QP01 to whi
h Proposition 5applies, is a proper superset of the 
lass of instan
es whi
h arise for negative semidef-inite matri
es A. Let N denote the 
lass of all n�n matri
es A with stri
tly negativeentries on the main diagonal. It is easy to show that matri
es A 2 N lead to instan
esof the CR-QP01 for whi
h Proposition 5 is valid. Suppose the 
ontrary. Let I 0 bean instan
e resulting from a matrix A0 2 N . Let x� = (x�1; : : : ; x�n) be an optimalsolution of the 
ontinuous relaxation of I 0, and assume that x�j is fra
tional for somej. Then x�j is the optimal solution of a quadrati
 optimization problem of the formmin0�xj�1 a0jjx2j +B(x�1; : : : ; x�j�1; x�j+1; : : : ; x�n)xj + C(x�1; : : : ; x�j�1; x�j+1; : : : ; x�n)for some quadrati
 fun
tions B and C. Sin
e a0jj < 0, the optimum 
annot be attainedat a fra
tional value, 
ontradi
ting the assumption.Note that the 
lass of instan
es resulting from matri
es A 2 N is a spe
ial
ase of the 
lass C1 
onsidered in Se
tion 4. This spe
ial 
ase is obtained by usingthe hypergraph H = (VH ; EH) where EH 
ontains only edges of size 1 (i.e. H is agraph all of whose edges are loops). It is not diÆ
ult to verify that the 
onditions ofTheorem 1 are satis�ed for H.It is well-known that the 
lass of negative semide�nite matri
es is 
ontainedin the set of matri
es with nonpositive entries on the main diagonal. This 
lass ofmatri
es is a superset of N . It is easy to see that our algorithm applies to this 
lassas well sin
e we either have aii < 0 for all i = 1; : : : ; n, or there exist entries aii = 0.In the �rst 
ase, the arguments from the paragraph above apply. In the latter 
ase,the variable xi does not appear in the quadrati
 part of the obje
tive fun
tion whi
himplies that the optimal value of xi 
an easily be obtained from the linear part of the32



obje
tive fun
tion. Consequently, our algorithm 
an be applied to solve the spe
ial
ase of the CR-QP01 with negative semide�nite A in polynomial time. For the sakeof fairness, it needs to be pointed out, however, that the algorithm of Allemand et al.has a lower 
omplexity than our algorithm.6.2 Non-dominan
eWe now 
ompare our approa
h with the approa
h of Allemand et al. We show thatnone of the two approa
hes dominates the other with respe
t to the 
lass of instan
esof the CR-QP01 whi
h 
an be solved in polynomial time.We �rst present an instan
e I1 of the CR-QP01 whi
h is solvable by our ap-proa
h, but not by the approa
h of Allemand et al. Consider the quadrati
 fun
tionf(x) = (n2x1 + x2)2 � x1 + 2n2x2 + nXi=3 (2n2 + i)xi!2 :It is easy to 
he
k that the matrix A 
orresponding to the quadrati
 part of f satis�esthe 
ondition aii + ajj + 2jaijj < 0 for 1 � i < j � n. The resulting 
lass of instan
esbelongs to both C1 and C2, and 
an hen
e be solved in polynomial time by ourapproa
h.We are now going to argue that the approa
h of Allemand et al. fails. Sin
e thevariables xi; i = 3; : : : ; n, appear only in the se
ond term, they must take the value1 in an optimal solution of the 
ontinuous relaxation. Solving the 2-dimensionalproblem in the remaining variables x1 and x2 shows that the unique minimum isattained for x = (�; 1; : : : ; 1) with � = n2+(n�2)(2n2+n+32 )n4�1 (see the appendix for moredetails). Therefore the instan
e I1 
annot be solved by the method of Allemand etal. Next we give an example of an instan
e I2 whi
h 
an be solved by the approa
hof Allemand et al., but not by our approa
h. Consider the quadrati
 fun
tion givenby f(x) =  nXi=1 (i+ 1)xi + 1!2 � nXi=1 xii !2 :This instan
e results from the matrix A with entries aij = (i + 1)(j + 1) � 1ij . Itis easy to see that A does neither belong to 
lass C1 nor to 
lass C2 (note that33



aii + ajj � 2jaijj � 0 for all i; j). Consequently our methods do not apply. Onthe other hand, f(x) is negative for all x 2 [0; 1℄n, therefore the optimal solutionof the 
ontinuous relaxation must be integral (see Hammer, Hansen, Pardalos, andRader [15℄), and hen
e this problem 
an be solved in polynomial time by the methodof Allemand et al. (and also by the method of Hammer et al.).7 Con
lusionsIn this paper, we derived two new polynomially solvable spe
ial 
ases of the CR-QP01.Our generi
 algorithm works by enumerating a superset of the set of lo
al minima ofthe obje
tive fun
tion f with respe
t to a suitably 
hosen neighborhood.Our results are essentially only of theoreti
al interest sin
e our algorithms forthe solution of the spe
ial 
ases C1 and C2 have running times whi
h make themunsuited for solving pra
ti
al problems for reasonably large values of n. (The mainreason for the high running times is their dependen
y on the 
ardinality of the setY .) It is, however, 
on
eivable that heuristi
s obtained from the general idea of ourapproa
h lead to promising results. For example, one 
ould think of developpinglo
al sear
h heuristi
s based on the neighborhoods used in this paper. Another wayto arrive at a heuristi
 is to refrain from 
omputing the full set Y and be insteadsatis�ed with a set Y 0 of randomly sele
ted points of Rd . Instead of sear
hing for thebest solution in X(Y ), we then sear
h for the best solution in X(Y 0).Finally note that the 
lasses presented in this paper are spe
ial 
ases of themore general 
lass de�ned by:Xi;j2F1 aij + Xi;j2F2 aij � 2Xi2F1Xj2F2 aij < 0 for all (F1; F2) 2 EHHwhere HH = (VHH ; EHH) is a \hyperhypergraph" whose edges are pairs fF1; F2gof subsets of VHH (a hypergraph 
an then be 
onsidered as the spe
ial 
ase of ahyperhypergraph with all edges of the form fF; ;g where F is a subset of VHH). Inparti
ular, the 
lass 
onsidered in Se
tion 5 
orresponds to the hyperhypergraphswith edges fF1; F2g satisfying jF1j + jF2j = 2. This suggests the following question:What 
onditions on HH ensure that the asso
iated instan
es of the CR-QP01 
an besolved in polynomial time ?
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AppendixIn this appendix we provide more details on the solution of the 
ontinuous relaxationof the instan
e I1 of the CR-QP01 whi
h has been investigated in Se
tion 6.2. Theresulting quadrati
 programming problem QP is given by:minx2[0;1℄n f(x) = (n2x1 + x2)2 � x1 + 2n2x2 + nXi=3 (2n2 + i)xi!2
Set h1(x) = n2x1 + x2 and h2(x) = x1 + 2n2x2 + nPi=3(2n2 + i)xi. Hen
e we 
anwrite f(x) = (h1(x))2 � (h2(x))2. Sin
e the variables xi, i = 3; : : : ; n only appear inthe se
ond term and sin
e h2(x) � 0, we will have xi = 1, i = 3; : : : ; n in any optimalsolution. Consequently we are left with a fun
tion in 2 variables:g(x1; x2) = (n2x1 + x2)2 � �x1 + 2n2x2 + (n� 2)�2n2 + n + 32 ��2 :Assume for a moment that the value of the fun
tion h2(x) at the optimum is known,and let this value be denoted by h�2. Then the optimal solution x� of the QP 
an beobtained as solution of the following 
ontinuous knapsa
k problem:min n2x1 + x2s.t. � x1 + 2n2x2 = h�2 � (n� 2) �2n2 + n+32 �x1; x2 2 [0; 1℄:Sin
e n21 > 12n2 , it is well known that the optimum solution is either of the form(x1; x2) = (0; �) or (x1; x2) = (�; 1) with 0 � � � 1. The minimum ofg(0; �) = �2 � �2n2�+ (n� 2)�2n2 + n+ 32 ��2on [0; 1℄ is attained for � = 1 (observe, for example, that the derivative of g(0; �) withrespe
t to � is negative). 37



On the other hand, we haveg(�; 1) = (n2�+ 1)2 � ��+ 2n2 + (n� 2)�2n2 + n+ 32 ��2 :By setting the derivative of h(�) = g(�; 1) equal to 0, we obtain that the minimumof g is attained for~� = n2 + (n� 2) �2n2 + n+32 �n4 � 1 :Note that ~� 2 [0; 1℄. Observing that g(~�; 1) < g(0; 1), we 
on
lude that the minimumof f over [0; 1℄n is obtained for x = (~�; 1; : : : ; 1), as 
laimed in Se
tion 6.2.
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