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R�esum�eDans et artile nous onsid�erons le probl�eme de minimisation quadratique 0�1non-ontraint ave une matrie de rang onstant, not�e CR-QP01. Ce probl�emeonsiste �a minimiser la fontion quadratique hx;Axi + h; xi sur l'ensemblef0; 1gn o�u  est un veteur de Rn et A est une matrie sym�etrique r�e�elle dedimension n� n et de rang onstant r.Nous pr�esentons d'abord un algorithme pseudo-polynomial pour r�esoudre leprobl�eme CR-QP01, qui est onnu pour être NP-diÆile d�ej�a pour r = 1. Nousd�erivons ensuite deux nouvelles lasses de as sp�eiaux de CR-QP01 qui peu-vent être r�esolues en temps polynomial. Ces lasses s'obtiennent en ajoutantdes restritions suppl�ementaires sur la matrie A. Finalement nous omparonsnotre algorithme ave le r�eent algorithme de Allemand et al. [1℄ pour CR-QP01 lorsque A est une matrie semi-d�e�nie n�egative et nous �etendons le do-maine d'appliation de e dernier algorithme. Nous montrons qu'auun desdeux algorithmes ne domine l'autre par rapport aux lasses d'instanes quipeuvent être r�esolues en temps polynomial.Mots Cl�es: programmation quadratique 0-1, as sp�eial, omplexit�e, mini-mum loal, matrie de rang onstant.
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1 IntrodutionProblem statement. In this paper we onsider a speial ase of the unonstrained0-1 quadrati programming problem, QP01 for short. The QP01 an be stated asfollows:minx2f0;1gnhx;Axi+ h; xi (1)where  is a vetor in Rn , A is a symmetri real n � n matrix and h�; �i denotes theEulidean inner produt in Rn . Note that sine x2i = xi for xi 2 f0; 1g, one ouldassume in problem (1) that there is no linear term, i.e., that  = 0. Applying thistransformation, however, hanges the diagonal elements of A. Sine this paper is on-erned with speial ases of the QP01 whih result from speially strutured matries,we prefer to work with the representation (1). Problem QP01 has been investigatedin numerous papers and has many appliations, see e.g. Boros and Hammer [4℄ andthe referenes ited therein.It is well-known that QP01 is strongly NP-hard; for example, it is equivalentto the maximum ut problem (MC) whih is well-known to belong to the lass ofstrongly NP-hard problems (for the equivalene see Hammer [14℄, for the omplexityof the MC problem see Garey and Johnson [13℄).The topi of this paper is the onstant rank unonstrained quadrati 0-1 pro-gramming problem, CR-QP01 for short, whih arises as speial ase of the QP01 byrestriting the matrix A to the lass of matries with onstant rank r. This restri-tion remains NP-hard even for the speial ase of rank 1 matries (for details, seeSetion 2).Related results. In the literature mainly two types of speial ases of the QP01have been investigated. The �rst type typially results from putting restritions onthe graph G(A) whih results by introduing an edge fi; jg for aij 6= 0. There is alose relationship between this lass of speial ases of the QP01 and speial asesof the maximum ut problem for speial graph lasses. An example of this �rsttype of speial ases is the ase whih results from graphs G(A) with bounded tree-width. This speial ase an be solved in polynomial time (see Crama, Hansen andJaumard [7℄ for a treatment in the more general setting of pseudo-Boolean programs),and subsumes the speial ases where the graph G(A) is series-parallel (Barahona [2℄)or where G(A) is a binary tree (Pardalos and Jha [20℄). There exist quite a number ofother polynomially solvable speial ases of the QP01 whih result from restritions3



on the graph G(A). As this paper deals with a di�erent lass of speial ases, werefrain from giving further details.The seond lass of speial ases arises from putting restritions on the matrixA = (aij). The best known example of this type is the ase of nonpositive matriesA, i.e., more preisely, aij � 0 for 1 � i < j � n. This ase an be solved byredution to a maximum ow problem in a network with O(n2) nodes (see Piardand Ratli� [21℄). The CR-QP01 belongs to this seond lass of speial ases. Thefollowing speial ases of the CR-QP01 have been treated in the literature.� A is of rank r = 1 and there is no linear term, i.e.,  = 0. This ase an besolved in a straightforward way by inspetion.� A has at most one positive and at most one negative eigenvalue and the matrix(A; ) is of rank 2. In this ase, the objetive funtion f in (1) an be writtenas produt of two linear funtions. This speial ase of the CR-QP01 is stillNP-hard, see Hammer et al. [15℄. In [15℄ an O(n logn) algorithm is proposed forsolving the ontinuous relaxation, and then ases are haraterized where theoptimal solution of the relaxation is 0-1, i.e., onstitutes an optimal solution ofthe CR-QP01.� A is negative semide�nite and there is no linear term, i.e.,  = 0. For this aseAllemand, Fukuda, Liebling and Steiner [1℄ proposed an algorithm of omplexityO(nr�1) for the ase r � 3 and O(n2) for r = 2. At the end of this paper we willshow that their algorithm atually solves a broader lass of problems, namelyall quadrati 0-1 problems with a matrix of rank r that have the property thatall optimal solutions of the ontinuous relaxation are integral.Our results. Our main result is the identi�ation of the following two new lassesof polynomially solvable ases of the CR-QP01:(C1) This lass results from a hypergraph H = (VH ; EH) with bounded edge size.We require that Pi;j2F aij < 0 holds for all edges F 2 EH and that the stablesets of H an be enumerated in polynomial time (for details see Setion 4).(C2) This lass results from an undireted graph G = (V;E), the edges of whih arepartitioned into two lasses E�(G) and E+(G). We require that� aii + ajj � 2aij < 0 for all fi; jg 2 E�(G)aii + ajj + 2aij < 0 for all fi; jg 2 E+(G)4



holds. Moreover, the following two properties have to be ful�lled: (i) Thenumber of maximal stable sets in the graph (V;E+(G)) is polynomial in n,and (ii) for eah maximal stable set S and for eah possible orientation O ofthe edges in the set E�(G[S℄) = ffi; jg 2 E�(G) and i; j 2 Sg, the numberof extensions of the partial order on S indued by O to a total order on S ispolynomial in n (for further details and de�nitions see Setions 3.7 and 5).Organization of the paper. The paper is organized as follows. In Setion 2,we disuss the omplexity of problem CR-QP01 and present a pseudopolynomialalgorithm for its solution. In Setion 3, we present the general framework of ourapproah. Setion 4 deals with the speial ase C1 and Setion 5 with the speial aseC2. In Setion 6, we ompare our approah with the approah of Allemand, Fukuda,Liebling and Steiner [1℄. More spei�ally, we show that the range of appliability ofthe approah of [1℄ an be extended. We furthermore provide examples whih showthat neither of the two approahes dominates the other in terms of the lasses ofinstanes of the CR-QP01 that an be solved in polynomial time. The paper is losedwith a short onlusion in Setion 7.2 Complexity aspets of the CR-QP01In this setion, we are going to investigate the omplexity of the CR-QP01 in somemore detail. In partiular, we will present a pseudopolynomial time algorithm for CR-QP01. This shows that, in ontrast to the general QP01, the speial ase CR-QP01with a matrix A of onstant rank is not NP-hard in the strong sense.For the rest of the paper we will make use of the following alternative repre-sentation of problem CR-QP01:minx2f0;1gn f(x) = he; xi+ dX̀=1 �` ��` + hu`; xi�2 (2)where d is a onstant, e and u1; : : : ; ud are given vetors in Rn , and �1; : : : ; �d,�1; : : : ; �d are given reals. Note that we ould always set �` = 0 for ` = 1; : : : ; d,beause all linear terms an be olleted in the term he; xi and additive onstants donot play a role in the minimization of f . The reason why we, nevertheless, use themore general formulation is that the hoie of the vetor e and of the numbers �`might have an inuene on the running times of our algorithms (for further detailssee the omments below). 5



From linear algebra it is known that any quadrati funtion an be alwaysrepresented in the form (2). One method to arrive at suh a representation is todetermine a spetral deomposition of A, i.e., to use the non-zero eigenvalues of Aas values �j and the eigenvetors as vetors uj, j = 1; : : : ; d where d = r (reall thatr denotes the rank of A). Moreover, all �` are set to zero. This approah has thedisadvantage that it might lead to irrational numbers in the representation (2), evenin the ase where all entries of A and  are rational. If a rational representationis needed, one an ompute a so-alled LDU deomposition of A whih leads inthe symmetri ase to a deomposition of A as produt LDLT where L is a lowertriangular matrix and D is a diagonal matrix with rank d = r (see text books onlinear algebra, e.g. [12℄, for details).Sine the representation of a quadrati funtion in the form (2) is not unique,this poses the question of �nding the best suh representation. Di�erent representa-tions an have di�erent values for d and e, whih will inuene the running time ofour algorithms. For example, by hoosing the numbers �` in a lever way, it mightbe possible to arrive at e = 0, whih, as we will see later, leads to algorithms withlower omplexity for the lasses onsidered in this paper. Similarly, a lever hoie ofe might allow to arrive at a quadrati part with rank d < r. We will not deal withthe question of �nding the representation whih results in the smallest running timesof our algorithms in this paper. This is a problem in its own right.It is well-known and easy to see that problem CR-QP01 is NP-hard already formatries of rank 1. If the representation (2) is used, one an even moreover assumethat e = 0. To see this, onsider the well-known subset sum problem, see [13℄,whih, given nonnegative integers s1; : : : ; sn and an integral target value B, asks forthe existene of a subset I � f1; : : : ; ng suh that Pi2I si = B. This question hasthe answer yes if and only if the optimal value of the instane of the CR-QP01 givenby minx2f0;1gn (Pni=1 sixi � B)2 is 0.The following result shows that problem CR-QP01 an be solved in pseudo-polynomial time for rational data.Proposition 1 Let an instane of problem (2) be given with e; u1; : : : ; ud 2 Zn,�1; : : : ; �d 2 Z and �1; : : : ; �d 2 Q . Let U = 2maxi=1;:::;n;`=1;:::;dfjuìj; jeijg. Thenthe given instane an be solved in O �dU2d+2n2d+3� time.To prove Proposition 1, we need the following lemma.6



Lemma 1 Let K = fkijg be a m � n integral matrix, and b an integer vetor ofdimension m. The problem of deiding whether there exists a vetor x 2 f0; 1gn suhthat Kx = b an be solved in O (mnm+1�m) time where � = 2 maxi;j=1;:::;nfjkijjg.Proof. The proof of this lemma is based on a modi�ation of the dynami pro-gramming approah of Papadimitriou [19℄ for the integer linear feasibility problem.Let k(i) denote the i-th olumn of the matrix K, i = 1; : : : ; n. At the j-th stageof the dynami program, we ompute the set Wj of vetors w that an be writ-ten as w = jPi=1xik(i) with xi 2 f0; 1g, i = 1; : : : ; j. The ardinality of the setWj is bounded from above by (j�+ 1)m. Hene the set Wn an be omputed inO �mPn�1j=1 (j�+ 1)m� = O (mnm+1�m) time. To answer the feasibility question,it suÆes to hek if the set Wn ontains the vetor b, whih an also be done inO (mnm+1�m) time.Proof of Proposition 1. For notational onveniene, set u0 = e. Due to thede�nition of U we have, �nU2 � hu`; xi � nU2 for all ` = 0; : : : ; d and x 2 f0; 1gn. Letv = (v0; : : : ; vd) be an integral vetor in the box ��nU2 ; nU2 �d+1. We assoiate with vthe following parametrized minimization problemmin gv0;:::;vd(x) = v0 + dX̀=1 �` (�` + v`)2 (3)s.t. � hu`; xi = v` ` = 0; : : : ; dxi 2 f0; 1g i = 1; : : : ; n:For eah hoie of v, the set of onstraints of the orresponding problem (3) de-�nes a feasibility problem whih an be solved in O �dnd+2Ud+1� time applying theapproah from Lemma 1. The optimal value of problem (2) is the minimum ofv0 + dP̀=1�` (�` + v`)2 over all vetors v = (v0; : : : ; vd) whih orrespond to a feasibleproblem. There are (nU + 1)d+1 = O �(nU)d+1� vetors (v0; : : : ; vd) to test, hene thelaimed result follows.3 General algorithmi frameworkIn this setion we present the general framework of our approah. In the two subse-quent setions we will disuss how polynomial time algorithms an be obtained for7



the speial ases C1 and C2 introdued in the introdution.In Setion 3.1 we introdue some key notations for the generi algorithmiapproah whih will be skethed in Setion 3.2. The generi algorithm onsists ofthree steps. We propose two variants for performing the �rst step, whih are arepresented in Setions 3.3 and 3.4, respetively. The seond and third steps of thealgorithm are addressed in Setions 3.5 and 3.6, respetively. In Setion 3.7, weintrodue some graph theoretial de�nitions that will be needed in the remainder ofthis paper.3.1 Neighborhoods and loal minimaA key notion needed in this setion is the notion of a neighborhood. The funtionN whih maps x 2 f0; 1gn to the set N (x) � f0; 1gn n fxg is alled a neighborhoodfuntion, or neighborhood for short. The members of the set N (x) are alled neighborsof x. Note that we allow N (x) = ;, i.e., x has no neighbors.~x 2 f0; 1gn is said to be a loal minimum of (2) with respet to the neighbor-hood funtion N if f(~x) � f(x) holds for all x 2 N (~x). ~x 2 f0; 1gn is said to be aglobal minimum of (2) if f(~x) � f(x) holds for all x 2 f0; 1gn.In the sequel it will be more onvenient to use the following alternative repre-sentation of neighborhood funtions: For x 2 f0; 1gn and a subset F of f1; : : : ; ng, letxF denote the vetor whih results from x by ipping the values of the omponentsof x orresponding to indies in F , i.e.,xFi = � 1� xi if i 2 Fxi if i 62 F i = 1; : : : ; n:Clearly, to eah neighborhood funtion N , we an assoiate a funtion F suh thatN (x) = fxF : F 2 F(x)g holds for all x 2 f0; 1gn. By a slight abuse of notation,we will in the following also refer to F as a neighborhood funtion. We denote by Gthe union of the sets F(x) over all x 2 f0; 1gn, i.e., G = Sx2f0;1gn F(x). We assumethat the sets in G are ordered in some arbitrary way, say G = fF1; F2; : : : ; Fgg whereg = jGj.Both spei� neighborhood funtions whih will be used in this paper (inSetions 4 and 5, respetively) are symmetri, i.e. ful�ll the property x 2 N (x0) ,x0 2 N (x). Moreover we assume that there exists a onstant p suh that jF j � p forall F 2 G. 8



We are now going to haraterize loal minima with respet to a given neigh-borhood funtion F .Proposition 2 x is a loal minimum with respet to the neighborhood funtion F ifand only if the following property holds for all F 2 F(x):Xj2F (2xj � 1) ej + 2 dX̀=1 �`uj̀(�` + hu`; xi)!� Xi;j2F(2xi � 1)(2xj � 1)aij � 0 (4)Proof. Compute the di�erene � = f(x)� f(xF ) and note that dP̀=1�`uìuj̀ = aij forall i; j = 1; : : : ; n. It is then easy to see that the ondition � � 0 is equivalent to theondition (4).We are now going to reformulate the onditions (4). Our goal is to arrive at apolyhedral desription. For eah set F 2 G we hoose a value ÆF suh thatXi;j2F(2xi � 1)(2xj � 1)aij � ÆF for all x 2 f0; 1gn: (5)Let Æ = (ÆF1; ÆF2 ; : : : ; ÆFg). To eah x 2 f0; 1gn we assoiate a polyhedron Px;Æ � Rdwhih ontains all y 2 Rd suh that2 dX̀=1 �` Xj2F (2xj � 1)uj̀! y` � ÆF �Xj2F (2xj � 1)ej for all F 2 F(x): (6)Proposition 2 implies that for all loal minima x with the property F(x) 6= ;(i.e. x has at least one neighbor) the polyhedron Px;Æ � Rd is nonempty (to see that,set y` := �` + hu`; xi for ` = 1; : : : ; d). In order to write the inequalities de�ning thepolyhedron Px;Æ in a more suint way, we introdue the terms rj(y) de�ned byrj(y) = ej + 2 dX̀=1 �`uj̀y` j = 1; : : : ; n: (7)Then Px;Æ an be de�ned as the set of all y 2 Rd suh that for all F 2 F(x) we haveXj2F (2xj � 1)rj(y) � ÆF : (8)9



3.2 A generi algorithmIn this setion we are going to propose a high-level desription of a generi algorithmA to solve the CR-QP01, stated in the form (2). In subsequent parts of Setion 3we will give more details on how the di�erent steps of the generi algorithm A anbe performed. Further speializations result from the hoie of spei� neighborhoodfuntions F in Setions 4 and 5, where the speial ases C1 and C2 are treated. Wenote that algorithm A is ineÆient for the general ase of CR-QP01. In Setions 4and 5, respetively, we will show how A turns into a polynomial time algorithm forthe speial ases C1 and C2, respetively.Generi algorithm A1. Construt a set Y with the property that Y ontains at least one point y 2 Px;Æfor all loal minima x with F(x) 6= ;.2. For eah y 2 Y , onstrut the set X(y) = fx 2 f0; 1gn : y 2 Px;Æg.3. Compute f(x) for all x 2 X(Y ) = Sy2Y X(y) and for all x 2 f0; 1gn suh thatF(x) = ;. Let x� be a point with minimal objetive funtion value among thetested points. Then x� onstitutes an optimal solution of problem CR-QP01.Clearly the hoie of Æ has a strong inuene on the e�etiveness of algorithmA. If Æ is badly hosen, then the ardinality of the sets X(y) will be too large toallow an eÆient algorithm (reall that in the �nal step of A an exhaustive searh isdone over the union of all sets X(y) for y 2 Y ). Observe that Pj2F (2xj � 1)rj(y) =�Pj2F (2xFj � 1)rj(y) holds for F 2 F(x). This motivates to hoose ÆF suh that, ifpossible, not both x and its orresponding neighbor xF ful�ll the inequality (8). Thiswill help in ahieving our goal to keep the ardinalities of the sets X(y) suÆientlysmall. In the following we will make use of the following two di�erent strategies toreah this goal:S1 Choose ÆF < 0 for all F 2 G.S2 In the ase e = 0, there exists the following alternative hoie: Set ÆF = 0 for allF 2 G. This hoie leads to an algorithm with improved running time as we willsee later on, but it makes only sense to apply it when Pj2F (2xj � 1)rj(y) 6= 0holds for a suÆiently large number of sets F 2 G (for details see Setion 3.4).10



In Setion 3.3, we show how to onstrut the set Y when strategy S1 is used. InSetion 3.4, we show how to perturb the problem so that Pj2F (2xj � 1)rj(y) 6= 0holds for all x 2 f0; 1gn and a suÆiently large number of sets F 2 G. This enablesthe use of strategy S2. The onstrution of the set X(y) is disussed in Setion 3.5.3.3 Constrution of the set Y using strategy S1 to hoose ÆIn this setion strategy S1 will be applied to hoose Æ. Let � be the set of all onstraintsof type (8). Note that a onstraint in (8) is de�ned by a subset F 2 G and a hoiefor the values xj, j 2 F . Thus, we have j�j � Ppj=1 �nj�2j = O(np) (reall that weassume throughout that jF j � p for all F 2 G). Suppose that the onstraints in �are ordered, i.e., � = f1; 2; : : : ; j�jg.We now onstrut a tree T as follows: A node of T at level h is haraterized byh linearly independent onstraints of type (8), say i1; : : : ; ih where i1 < i2 < : : : < ih.The root of the tree (level 0) orresponds to an empty set of onstraints. Given anode N(i1 ; : : : ; ih) at level h, its sons are the nodes N(i1; : : : ; ih; i) for all possiblehoies of i suh that the following three properties are ful�lled: (i) i > ih, (ii) the h+1onstraints i1; : : : ; ih; i are linearly independent and (iii) onstraint i is ompatiblewith the onstraints i1; : : : ; ih with respet to the hoie of the values of the variablesxj involved in these onstraints. Clearly the maximal depth of the tree T is d. Foreah leaf of the tree, we ompute a point of the system of equations assoiated to theleaf (these equations result if we require that the inequalities haraterizing the leafare all ful�lled with equality). Note that, if a leaf is at level d, this system of equationshas a unique solution, whih is not the ase if the leaf is at a level < d. In the latterase we simply hoose one solution of the system of equations orresponding to theleaf under onsideration. The points omputed in this way onstitute the set Y .It remains to be argued that the set Y onstruted above ontains at leastone point of eah polyhedron Px;Æ. Let x be �xed and onsider a fae f of thepolyhedron Px;Æ with smallest dimension d� k (if Px;Æ has extreme points, f will bean extreme point). This fae f is haraterized by k linearly independent onstraintsof type (8) whih are satis�ed at equality, say, j1; : : : ; jk with j1 < j2 < : : : jk. Byde�nition, the tree T ontains the node N(j1; : : : ; jk). If N(j1; : : : ; jk) is a leaf,then by onstrution of the algorithm, a point of the fae f has been omputed. IfN(j1 ; : : : ; jk) is not a leaf, then it has a desendent N(j1 ; : : : ; jk; jk+1; : : : ; jt)whih is a leaf: the point that was omputed for this leaf is a point of our fae f .The number of leaves in the tree, and hene the ardinality of Y , is boundedby �j�jd � (observe that the number of leaves is largest if there are no leaves at levels11



< d). The amount of work that has to be done at eah node (i.e., either hekingthat the inequalities of that node are linearly independent, or �nding a point of thesystem) an be bounded by O(d3), hene the time omplexity of omputing Y is givenby O� dP̀=1 �j�j` �d3� = O�d3 dP̀=1 j�j`� = O �d3 j�jd+1�1j�j�1 � = O(j�jdd3) = O(d3npd).3.4 Impliit onstrution of the set Y using strategy S2 tohoose ÆStrategy S2 will be applied when e = 0. Reall that this means that we set ÆF = 0for all F 2 G. In that ase Px;Æ is a polyhedral one with origin 
 = (0; : : : ; 0) forall x 2 f0; 1gn. Note that the point 
 itself is not a useful point for inlusion intothe set Y beause it belongs to all Px;Æ. (
 2 Y would result in X(Y ) = f0; 1gn, i.e.,in an exhaustive searh over all feasible solutions of CR-QP01). Instead we onsiderpoints that are lose to 
. These points are on extreme rays (or faes of greaterdimension, if no extreme rays exist). Sine these faes are of dimension � 1, theirnumber is O(j�jd�1) = O(np(d�1)). This allows us to derease the time omplexityof the proedure for omputing Y in omparison to the ase of strategy S1 whereO(j�jd) points had to be investigated. The prie we have to pay for this improvementis that we have to ope with problems whih result from degeneray.Eah point y 2 Y results from a set of onstraints of type (8) whih have to beful�lled at equality. If for a point y and for sets F 2 G that were not used to de�ney, we have Pj2F (2xj � 1)rj(y) = 0, the point y might not be muh more useful than
. This means that we have to take are of degeneray. To that end, a symboliperturbation method, whih is desribed next, will be applied.3.4.1 A perturbation methodThe perturbation method whih we are going to propose is inspired by an approahdesribed in the book by Edelsbrunner [9, p. 185{191℄. Let q be the �rst primegreater than d + 1 and set  (j; `) = qd(j+1)�`. Consider the perturbed vetors bu`de�ned bybuj̀ = uj̀ + " (j;`) ` = 1; : : : ; d; j = 1; : : : ; nwhere " is a small positive number. Note that this perturbation also a�ets theproblem in (2). We are atually solving a perturbed version whih is obtained by12



replaing the vetors u` by their perturbed versions bu`, ` = 1; : : : ; d. Let bPx;0 be theperturbed version of Px;0. The polyhedron bPx;0 ontains all y 2 Rd whih ful�llXj2F (2xj � 1)brj(y) � 0 for all F 2 F(x) (9)where brj(y) = 2Pd̀=1 �`buj̀y` for j = 1; : : : ; n.If we had to give a spei� value to ", this value would probably have to beexponentially small, whih would threaten the polynomiality of our algorithm. Itturns out, however, that we an perform Step 1 of algorithm A in a modi�ed waysuh that it is not neessary to expliitly ompute the andidate points y 2 Y . Thisallows us to refrain from hoosing a spei� value for ". The key observation is thatit suÆes to be able to determine the sign of the expressions on the left hand sideof the inequalities (9) de�ning the perturbed polyhedron bPx;0. In Setion 3.4.2, weexplain how to onstrut the systems de�ning the andidate points y 2 Y . In Setion3.4.3, we haraterize the sets F 2 G for whih the expressions Pj2F (2xj � 1)brj(y)are non-zero. Setion 3.4.4 explains how to determine the sign of the expressionsPj2F (2xj�1)brj(y). Setion 3.4.5 disusses when the perturbation method should beused.3.4.2 Impliit onstrution of the set YConsider again the tree T introdued in Setion 3.3. In the rest of Setion 3 wewill work with the perturbed problem. A given node of tree T at level h is thusharaterized by a system of equationsXj2Ft�(2xj � 1)brj(y) = 0 � = 1; : : : ; h (10)where Ft� 2 G for � = 1; : : : ; h and the values xj, j 2 S�=1;:::;h Ft� , are given.Reall that in the proess of onstruting the tree T desribed in Setion 3.3 werepeatedly need to test a given set of inequalities of type (8) for linear independeny.Moreover, the expliit onstrution of the set Y requires that a system of equationsis solved. This approah annot be followed if perturbation is used and no spei�value of " is hosen. In the following we will demonstrate how these diÆulties anbe irumvented. 13



Suppose we are given the system of equations (10). We assoiate with thissystem the following simpli�ed system of equations in the new variables zj:Xj2Ft� zj = 0 � = 1; : : : ; h: (11)Obviously, the linear dependeny of these equations implies the linear dependeny ofthe equations (10).One of the problems with degeneray is that there will be leaves of the tree Tat levels < d, whih means that there does not exist a unique solution to the set ofequations whih de�ne the respetive leaf. We are now going to demonstrate that byadding � 1 suitably hosen additional onstraints, the resulting system of equationswill always have a unique solution.We start with disussing the ase of a leaf at level h = d� 1. We augment thesystem (11) by a normalization onstraint of the formXj2Ft0 �jzj = 1 (12)where the set Ft0 � f1; : : : ; ng and the oeÆients �j; j 2 Ft0 are hosen suh that theequations given by (11){(12) are linearly independent (Ft0 does not need to belong toG; a possible hoie is Ft0 = fj0g where j0 62 S�=1;:::;h Ft� and �j0 = 1, although thishas the disadvantage to require the �xation of an additional variable xj0). Considerthe system in the variables y` obtained by replaing zj by (2xj � 1)brj(y). We shownow that for " suÆiently small, this system has always a unique solution.The pratial importane of the subsequent proposition is that the linear in-dependeny of the system (11){(12) does not depend on " and an thus be hekedwithout hoosing a spei� value for ".Proposition 3 Assume that the d equations in the variables zj given by (11){(12)are linearly independent. Then for any hoie of the values xj; j 2 S�=0;:::;d�1Ft� , andfor " suÆiently small, the system in the variables y` given byXj2Ft�(2xj � 1)brj(y) = 0 � = 1; : : : ; d� 1Xj2Ft0 �j(2xj � 1)brj(y) = 1 14



has an unique solution.Proof. Sine the equations given by (11){(12) in the variables zj are linearly indepen-dent, this system of equations an be put in a triangular form, i.e., there exist numbers�ik for i = 1; : : : ; d, and k = 1; : : : ; n, satisfying �ii = 1 for i = 1; : : : ; d and numbersbi; i = 1; : : : ; d, suh that the system (11){(12) is equivalent to Pnk=i �ikzjk = bi fori = 1; : : : ; d. The orresponding system in the variables y` has then the followingform: dX̀=1 �` nXk=i �ik(2xjk � 1) �uj̀k + " (jk;`)�! y` = bi; i = 1; : : : ; d:Clearly the determinant of the oeÆient matrix of this system is a polynomial in". This polynomial ontains the term � dQi=1�i�ii(2xji � 1)� " dPi=1 (ji;i) (observe that aanellation of this term is not possible sine due to the onstrution of the perturba-tion there annot be another term with the same power of "). Hene the polynomialontains at least one non-zero term. Consequently, the determinant will be non-zerofor " suÆiently small, whih implies the laim about the unique solvability.The ase where the level of the leaf under onsideration is h < d�1 is reduedto the ase h = d� 1 by adding d� 1� h additional equations of the form (10), butwith Ft� , � = h + 1; : : : ; d � 1, possibly hosen outside G, suh that the equationsPj2Ft� zj = 0, � = 1; : : : ; d� 1 are linearly independent.We are now prepared to summarize the proedure to onstrut the set Yimpliitly. We again build up the tree T desribed in Setion 3.3, but there are twoessential di�erenes. The �rst one relates to the fat that instead of omputing themembers of the set Y expliitly, we will work with systems of equations whih de�nethe points in Y . The seond di�erene onerns the fat that the leaves of the treehave a depth of � d � 1 (in ontrast to � d in Setion 3.3). In the following wedistinguish two ases: leaves at level d� 1 and leaves at levels < d� 1.We start with the �rst ase. A leaf at level d � 1 is haraterized by d � 1equalities of type (10). These equalities de�ne a line L passing through the origin 
,where 
 partitions L into two halines. The addition of the normalization onstraintPj2Ft0 �j(2xj�1)brj(y) = 1 has the e�et of seleting a point lying on one of these twohalines. Sine the line L is not neessarily lying ompletely inside the polyhedronbPx;0 (
 might be an extreme point of bPx;0), we also need to selet a point whih is15



lying on the other haline of L originating at 
. Suh a point is obtained by addingthe normalization onstraintPj2Ft0 �j(2xj�1)brj(y) = �1 to the system of equationsde�ning the line L. We end up with two systems of equations, representing two pointsyL1 and yL2 , one of whih is guaranteed to belong to bPx;0. By inluding both pointsinto the set Y we are on the safe side.The seond ase onerns leaves at levels h < d�1. In suh a ase, we �rst addd � 1 � h arti�ial onstraints as explained above. We end up with d � 1 equationswhih are linearly independent. These equations again de�ne a line L through theorigin, but in that ase it is guaranteed that the line L lies ompletely inside of thepolyhedron bPx;0 (whih has no extreme points in this ase). Thus it suÆes to hoosearbitrarily one of the two halines of L originating at 
 and to selet a point on thathaline. Suh a point is de�ned by taking the d � 1 onstraints de�ning the line Land adding the normalization onstraint Pj2Ft0 �j(2xj � 1)brj(y) = 1.>From the disussion above it follows that the set Y , with whih we end up,will indeed have ardinality O(j�jd�1), in ontrast to O(j�jd) in the ase handled inSetion 3.3.3.4.3 Charaterizations of sets F with Pj2F(2xj � 1)brj(y) 6= 0In this setion we show that the proposed perturbation method eliminates the prob-lems aused by degeneray. Spei�ally, the perturbation guarantees that the numberof sets F 2 G for whih Pj2F (2xj � 1)brj(y) = 0 holds is suÆiently small. (Reallthat this property is required to end up with a set X(Y ) of manageable size.)The following two results haraterize the sets F with the desired propertyPj2F (2xj � 1)brj(y) 6= 0.Proposition 4 Let ~y be a point of Y whih is impliitly de�ned by the system ofequationsPj2Ft� (2xj�1)brj(y) = 0 for � = 1; : : : ; d�1 augmented by a normalizationonstraint whih is not listed here. Let Ftd � f1; : : : ; ng (not neessarily in G). Ifthe equations Pj2Ft� zj = 0, � = 1; : : : ; d, are linearly independent, then we havePj2Ftd(2xj � 1)brj(~y) 6= 0.Proof. The proof is similar to that of Proposition 3. We �rst write the systemPj2Ft� zj = 0, � = 1; : : : ; d, as a triangular system, then replae the variables zj by(2xj�1)Pd̀=1 �` �uj̀ + " (j;`)� y` and onsider the determinant of the resulting system16



in the variables y`. This determinant is again a polynomial in " with at least one non-zero term, hene the determinant is non-zero for " suÆiently small. Therefore theonly solution of the system of d equations is the point 
 = (0; : : : ; 0). Sine ~y is notequal to 
 and satis�es the �rst d � 1 equations, ~y annot satisfy the last equationgiven by Pj2Ftd(2xj � 1)brj(~y) = 0 whih proves the laim.Reall that when determining a point y, we had to �x the values of some ofthe xj. Denote by Jy the set of indies j 2 f1; : : : ; ng with the property that thevalues xj have not been used to de�ne y.Corollary 1 For all F � Jy and all x 2 f0; 1gn, we have Pj2F (2xj � 1)brj(y) 6= 0.Proof. The assumption F � Jy implies that the equation Pj2F zj = 0 only involvesvariables zj with indies j whih are not appearing in the equations used to determiney. Consequently Proposition 4 an be applied whih yields the desired result.3.4.4 Determination of the sign of Pj2F(2xj � 1)brj(y)Assume that the point y 2 Y is impliitly de�ned by the systemdX̀=1 �`0�Xj2Ft�(2xj � 1) �uj̀ + " (j;`)�1A y` = 0 � = 1; : : : ; d� 1 (13)dX̀=1 �`0�Xj2Ft0 �j(2xj � 1) �uj̀ + " (j;`)�1A y` = 1 (14)Let F � Jy. We now explain how to determine the sign of Pj2F (2xj � 1)brj(y).To simplify the notation, we set Ftd = F (reall, however, that F does not ne-essarily belong to G). By Cramer's Rule, we have y` = detM`(")detM(") for ` = 1; : : : ; d, whereM(") denotes the oeÆient matrix of the system of equations given by (13){(14) andM`(") denotes the matrix obtained from M(") by replaing the `-th olumn of M(")by the olumn vetor (0; : : : ; 0; 1)t. Note that detM(") is non-zero by Proposition 3.Let �0k` = �` �Pj2Ftk (2xj � 1) �uj̀ + " (j;`)�� for k = 0; : : : ; d and ` = 1; : : : ; d.We are interested in the sign of the expression Pj2Ftd(2xj � 1)brj(y). This17



expression is equal to	 = Xj2Ftd(2xj � 1)brj(y) = dX̀=1 �0d`y` = dX̀=1 �0d`detM`(")detM(") :We now develop the determinant of the matrixM`(") with respet to its `-th olumn.This leads to detM`(") = (�1)d+` detM 00` (") whereM 00` (") is the matrix obtained fromM`(") by deleting the `-th olumn and the last row. Hene	 = dX̀=1 (�1)d+`�0d`detM 00` (")detM(") = detM 00(")detM(")where M 00(") is the matrix with elements �0k`, k; ` = 1; : : : ; d. Proeeding in a similarway as in the proof of Proposition 3, it an be shown detM 00(") is non-zero for "suÆiently small. Sine both detM(") and detM 00(") are polynomials in ", theirsign is determined by the sign of their �rst non-zero oeÆient, starting with theterms of smallest exponent. We explain in the following how to determine the signof detM 00("). The ase of detM(") is handled analogously. The exponents of "in detM 00(") are of the form P(j;`)2S �(j; `) = P(j;`)2S qjd+d�` for all subsets S of�S�=1;:::;d Ft�� � f1; : : : ; dg with ardinality � d. Sine p is an upper bound on jF jfor all F 2 G, it follows that j an take at most pd distint values whih implies thatthe expression  (j; `) = (j + 1)d � `, (j; `) 2 S, an take at most pd2 + d distintvalues. The number of possible values for the exponents of " is therefore bounded byPdk=1 �pd2+dk �. For eah possible exponent ! of ", the oeÆient of "! is the sum of atmost d subdeterminants of M 00("), and an thus be omputed in O(d4) time. Sined is a onstant, the sign of Pj2F (2xj � 1)brj(y) an therefore be omputed in O(1)time (note, however, that the onstants hidden in this asymptoti notation inreaserapidly with d and p).3.4.5 Appliability of the perturbation methodIn order to be able to apply the perturbation method, we must haveXi;j2F baij � 0 for all F 2 G (15)for " suÆiently small, where bA is the perturbed matrix de�ned by baij =Pd̀=1 �`buìbuj̀for all i; j. (Note that if an inequality in (15) were violated, it would not be possible18



to hoose Æ = 0.) The ondition (15) is guaranteed to hold for small values of ", onlywhen Pi;j2F aij < 0 holds for all F 2 G.We lose the disussion of the perturbation approah by the remark that inpriniple this approah an also be applied in the general ase, i.e., e 6= 0. Theandidate set Y an be omputed in O(j�jd�1) time in the ase when e 6= 0, butthe number of indies i suh that ei 6= 0 is bounded by a onstant. In that ase,we distinguish between polyhedra Px;Æ that ontain the origin 
, and polyhedra thatdo not ontain 
. For polyhedra that ontain 
, we ompute (impliitly) points onfaes of dimension � 1. For polyhedra that do not ontain 
, we ompute andidateextreme points, but by restriting our attention to points that satisfy at equality atleast one inequality separating 
. Sine the number of these inequalities is boundedby a onstant, these andidate extreme points an also be omputed in O(j�jd�1)time. Although the perturbation method an also be applied in the ase e 6= 0, it isnot reommendable to apply it for at least 3 reasons: removing the degeneray resultsin an inrease of the ardinality of Y ; the hidden onstants in the omplexity boundinrease when perturbation is used; and �nally, perturbation may destroy a possiblesymmetry in the objetive funtion, implying that algorithm A annot any longer beused to obtain the set of all optimal solutions.In the remaining part of this paper, we generally assume that the perturbationmethod is used when e = 0, and not used when e 6= 0.3.5 Constrution of the set X(y)In order to be able to handle the ases with and without appliation of the perturba-tion method in a uni�ed way, we introdue the expressions �j(y) for j = 1; : : : ; n andy 2 Y , where �j(y) equals brj(y) if perturbation is used and equals rj(y) otherwise.Let y 2 Y be given expliitly or impliitly (by its set of de�ning equations).In order to onstrut the set X(y) we need to ompute the set of all x 2 f0; 1gn suhthat y 2 Px;Æ (or its perturbed version bPx;0). This task amounts to �nding all pointsx 2 f0; 1gn whih satisfyXj2F (2xj � 1)�j(y) � ÆF for all F 2 F(x)where ÆF = 0 for all F 2 G in the perturbed ase.19



Our method for solving this task is largely dependent on the hoie of theneighborhood funtion F . We therefore postpone the further disussion of the om-putation of the sets X(y) to Setions 4 and 5, where spei� neighborhoods funtionsfor the ases C1 and C2 will be introdued.3.6 Constrution of the set of optimal solutionsLet X(Y ) =  Sy2Y X(y)! and X = X(Y ) [ fx : F(x) = ;g: the optimal solutions toproblem (2) are obtained by evaluating the objetive funtion f for all points of X,and keeping the points of smallest value. The omplexity of this phase is O(jXjnd).Note that we an also onstrut the set of all loal minima for the neighborhoodfuntion F under onsideration by testing all points in X and listing those whih areloal minima. The running time of this approah is jXj times the time needed tohek if a given point is a loal minimum with respet to F .A word of aution is in order when perturbations are used. We then have noguarantee to obtain all global optima, or all loal minima, and will in general have tobe satis�ed with a single global optimum.3.7 Some graph theoretial de�nitionsThe following de�nitions will be needed in the remainder of the paper (for furtherdetails see e.g. Berge [3℄).A hypergraph H = (VH ; EH) is de�ned by a set VH of verties and a olletionEH of subsets of VH alled edges. For notational onveniene assume VH = f1; : : : ; ng.The size of an edge F 2 EH is the ardinality of F , i.e., jF j. An edge of size 1 isalled a loop. Observe that a hypergraph H beomes a graph if all edges are of size1 or 2. A hypergraph is said to be of bounded edge size if there exists a onstant ksuh that jF j � k for all F 2 EH .Let H = (VH ; EH) be a hypergraph and let W � VH . The set W indues asubhypergraph of H, the so-alled indued subhypergraph H[W ℄ = (W;EH[W ℄) withvertex set W and edge set EH[W ℄ whih only ontains those edges F 2 EH whihare subsets of W . As a speial ase the notion of a indued subgraph arises. LetG = (V;E) be an undireted graph and W � V , then G[W ℄ = (W;EW ) with EW =ffi; jg 2 E : i; j 2 Wg is alled the subgraph of G indued by the vertex set W .20



A stable set or independent set of H = (VH ; EH) is a subset W of VH suh thatno subset of W belongs to EH . Note that a subset of a stable set is still a stable set.Given a direted graph D = (V;ED), we de�ne the partial order � whih isindued by D on V as follows: i � j, i; j 2 V if and only if (i; j) 2 ED.4 A polynomial time algorithm for speial ase C1In this setion, we onsider the speial ase C1 of problem CR-QP01 (f. Setion 1).This ase arises for matries A of rank d whih additionally satisfy the followingpropertyXi;j2F aij < 0 for all F 2 EH (16)where H = (VH ; EH) is a hypergraph with jVHj = n. Our main result is the following:Theorem 1 Assume that the following onditions are satis�ed:(a) H is a hypergraph of bounded edge size.(b) The largest stable set in H is of size O(logn)() The number of maximal stable sets in H is polynomial in n.Then the CR-QP01 stated in the form (2) an be solved in polynomial time whenrestrited to the lass of matries ful�lling property (16).Theorem 1 will be proved in the ourse of this setion.4.1 De�nition of the neighborhood funtion used for ase C1For dealing with ase C1, we need a neighborhood funtion F . To de�ne F weproeed as follows. Let H = (VH ; EH) be a hypergraph and let x 2 f0; 1g. LetHx0 = H[V x0 ℄ and Hx1 = H[V x1 ℄, respetively, denote the subhypergraphs of H whihare indued by the vertex sets V x0 and V x1 , respetively, where V x0 = fi 2 VH : xi = 0gand V x1 = fi 2 VH : xi = 1g. To eah x 2 f0; 1gn we now assoiate the set F(x)21



whih de�nes the neighbors of x by taking F(x) to be the union of the edges of thesubhypergraphs Hx0 and Hx1 . In other words, x0 2 f0; 1gn is a neighbor of x if it anbe obtained from x by seleting an edge F 2 EH suh that the omponents xi, i 2 F ,have the same value and then ipping the value of these omponents. Observe thatG = Sx2f0;1gn F(x) = EH .Let Æ be hosen either aording to strategy S1, i.e., suh that Pi;j2F aij � ÆF < 0holds for all F 2 G, or aording to strategy S2, i.e., ÆF = 0 for all F 2 G (thisstrategy is applied for e = 0).Using the neighborhood funtion F introdued above, the de�ning inequali-ties (8) of the polyhedron Px;Æ (or the inequalities (9) de�ning its perturbed version)simplify toXj2F �j(y) � ÆF for all F 2 F(x) suh that xi = 1 for all i 2 F (17)�Xj2F �j(y) � ÆF for all F 2 F(x) suh that xi = 0 for all i 2 F (18)where again �j(y) equals brj(y) or rj(y) depending on whether or not perturbation hasbeen applied (f. Setion 3.5).4.2 Constrution of the set X(y) for ase C1We assume that the set Y has already been omputed (either expliitly or impliitly,see Setions 3.3 and 3.4, respetively). In order to ompute the set X(y) for a giveny 2 Y , we need to �nd all points x 2 f0; 1gn suh that y 2 Px;Æ (f. Setion 3.2),whih in our ase means the set of all x 2 f0; 1gn suh that the system of inequalitiesgiven by (17){(18) is satis�ed. Reall that in the ourse of omputing y, the valuesof some xj have already been �xed to either 0 or 1. Let Jy again denote the setof the indies j 2 f1; : : : ; ng for whih the value of xj has not yet been �xed. Forj 2 f1; : : : ; ng n Jy, let xyj denote the already �xed value of the j-th omponent ofx. Clearly, we do not have any freedom in hoosing the values xyj . Thus the task ofomputing the set X(y) amounts to �nding all possibilities for hoosing the values ofxj for j 2 Jy suh that y belongs to Px;Æ.Let H[Jy℄ denote the subhypergraph of H whih is indued by the vertex setJy � VH . If x 2 f0; 1gn satis�es the system of inequalities (17){(18), then it also22



satis�es the following set of onditionsXi2F �i(y) � 0 for all F 2 EH[Jy℄ suh that xi = 1 for all i 2 F (19)Xi2F �i(y) > 0 for all F 2 EH[Jy℄ suh that xi = 0 for all i 2 F : (20)To prove this laim, we distinguish two ases depending on whih strategy has beenused to hoose Æ. If S1 has been applied, we have ÆF < 0 for all F 2 G, so the laimfollows diretly from (17){(18). If S2 has been applied, inequality (20) follows fromCorollary 1.Consequently, the task to ompute X(y) redues to the searh for all partitions(Oy; Zy) of the set Jy suh thatXi2F �i(y) � 0 for all F 2 EH[Oy℄ and Xi2F �i(y) > 0 for all F 2 EH[Zy℄: (21)Suh partitions will be alled feasible partitions of Jy. Eah feasible partition leadsto a point x 2 X(y) in the following way:xj = 8<: 0 for j 2 Zy1 for j 2 Oyxyj for j 2 Jy (22)(The names Oy and Zy have been hosen to reet that xj is set to one for j 2 Oy,and to zero for j 2 Zy.)It is easy to see that the set of feasible partitions is nonempty sine the partition( eOy; eZy) with eOy = fi 2 Jy : �i(y) � 0g and eZy = fi 2 Jy : �i(y) > 0g is learlyfeasible (note that if perturbation is used, we have to use the tehnique desribed inSetion 3.4.4 to determine the sign of �i(y)).Our problem now is to �nd all feasible partitions of Jy. The following lemmaturns out to be helpful in solving this problem.Lemma 2 Let ( eOy; eZy) be the initial feasible partition de�ned above and let (Oy; Zy)be an arbitrary partition of Jy. Then (Oy; Zy) is a feasible partition if the followingtwo onditions are ful�lled(i) U0!1y = eZy \Oy is a stable set in the indued hypergraph H[ eZy℄.23



(ii) U1!0y = eOy \ Zy is a stable set in the indued hypergraph H[ eOy℄.Proof. We prove the statement in (i). The statement in (ii) is proved analogously.Assume that U0!1y is not a stable set in H[ eZy℄, i.e., it ontains an edge F of thehypergraph H[ eZy℄. Then by the feasibility of ( eOy; eZy) it follows thatPi2F �i(y) > 0.Therefore, we annot have Pi2F �i(y) � 0, whih shows that (Oy; Zy) annot bea feasible partition sine the �rst ondition in (21) would be violated (note thatU0!1y � Oy). We thus arrived at a ontradition whih implies the laim (i).Lemma 2 and the disussion above motivate the following approah for om-puting the set X(y) (atually a superset of X(y) is determined beause (17){(18)have been replaed by (19){(20)):Algorithm B to ompute X(y) :1. Compute the initial feasible partition ( eOy; eZy). Compute the point ~x assoiatedwith ( ~Oy; ~Zy) aording to (22). Add ~x to X(y).2. Enumerate the sets S(H[ eZy℄) and S(H[ eOy℄) whih denote the sets of all stablesets in the indued hypergraphs H[ eZy℄ and H[ eOy℄), respetively. (Note thatS(H[ eZy℄) and S(H[ eOy℄) are subsets of the set of all stable sets of the hypergraphH.)3. With eah (S0; S1) 2 S(H[ eZy℄)� S(H[ eOy℄), we assoiate the new feasible par-tition (Oy; Zy) with Oy = eOy [ (S0 n S1) and Zy = eZy [ (S1 n S0). Compute thepoint x assoiated with (Oy; Zy) aording to (22). Add x to X(y).Note that the running time of algorithm B depends heavily on the time neededby the seond step in whih all stable sets of two subhypergraphs of H need to beenumerated. Eiter and Gottlob [10℄ have proposed an algorithm whih lists all stablesets of a hypergraph of bounded edge size in time polynomial in the size of the output(the existene of suh an algorithm without the assumption of bounded edge size isan open question). The approah of [10℄ an be applied in our ase, but in order toarrive at a polynomial overall running time for the proedure for omputing X(y),we need to make sure that the size of the output depends polynomially on the sizeof the input. This leads to the following suÆient ondition for the polynomiality ofalgorithm B.Condition 1 The sum of the ardinality of all stable sets of H is polynomial in n.24



Simpli�ations are possible when H is a graph. For graphs a wealth of papersare available whih present algorithms for listing all stable sets of H in time poly-nomial in the size of the output, see, e.g., [5, 6, 8, 16, 17, 18, 22℄. The followingondition suÆes to guarantee the polynomiality of algorithm B for the speial aseof graphs. This ondition is weaker than Condition 1 and is easier to hek.Condition 2 The degree of any vertex in H is at least n � b logn, where b is aonstant.Observe that this ondition ensures that the number of stable sets in H = (VH ; EH) ispolynomial in n. This is true beause the number of stable sets ontaining the vertexi 2 VH is bounded by 2b log n = nb whih implies that the total number of stable setsis bounded by n � nb = nb+1.Now the proof of Theorem 1 is almost ompleted. We have already argued inSetions 3.3 and 3.4 that the omputation of the set Y , i.e., the �rst step of the generialgorithm A presented in Setion 3.2, an be implemented to run in polynomial time.Now onsider the running time of the seond step (omputation of the setsX(y)). Sine the sum of the ardinalities of all subsets of a stable set of ardinalitym is given by Pmk=1 �mk�k = m2m�1, the sum of the ardinalities of all stable sets isbounded by �(N;m) = Nm2m�1, where N denotes the number of maximal stablesets and m denotes the size of the largest maximal stable set. The number �(N;m)is bounded from above by a polynomial in n provided that N is a polynomial in nand m = O(logn). This shows that the onditions of Theorem 1 imply Condition 1,and hene the seond step of algorithm A an be implemented in polynomial time aswell. It remains to disuss the omplexity of the third and last step of algorithm A.To arrive at an overall polynomial time algorithm we need to make sure that the setof points x suh that F(x) = ; an be onstruted in polynomial time. Observe thatF(x) = ; if and only if VH , the vertex set of H an be partitioned into 2 stable sets.Consequently Condition 1 also ensures that the set of points x suh that F(x) = ;an be onstruted in polynomial time.5 A polynomial time algorithm for speial ase C2In this setion we are going to deal with the speial ase C2 of problem CR-QP01 (f.Setion 1). Let G = (V;E) be an undireted graph the edges of whih are partitioned25



into two sets E+(G) and E�(G), i.e. E+(G) \E�(G) = ; and E+(G) [E�(G) = E.Let G+ = (V;E+(G)) and G� = (V;E�(G)), respetively, denote the subgraphs ofG whih only ontain the edges in E+(G) and in E�(G), respetively. If G0 is asubgraph of G, let E+(G0) denote the subset of edges in E+(G) whih also belong toG0. E�(G0) is de�ned analogously.Reall that the speial ase C2 arises for matries A of rank d whih addition-ally satisfy the following onditions:aii + ajj + 2aij < 0 for all fi; jg 2 E+(G) (23)aii + ajj � 2aij < 0 for all fi; jg 2 E�(G): (24)The main result of this setion is the following:Theorem 2 Assume that the following 2 onditions are satis�ed(a) The number of maximal stable sets in the graph G+ is polynomial in n.(b) For eah maximal stable set S of G+ and for eah possible orientation ~G�[S℄ ofthe indued subgraph G�[S℄, the number of extensions of the partial order on Sindued by the direted graph ~G�[S℄ to a total order on S is polynomial in n.Then the CR-QP01 stated in the form (2) an be solved in polynomial time whenrestrited to the lass of matries ful�lling properties (23){(24).5.1 De�nition of the neighborhood funtion used for ase C2The neighborhood funtion F assoiated with lass C2 is impliitly de�ned as follows:x0 2 f0; 1gn is a neighbor of x 2 f0; 1gn if x and x0 di�er in exatly two omponentsi and j, where we additionally require that the following two onditions are ful�lled:� fi; jg 2 E�(G) implies xi = 1� xj (= 1� x0i = x0j).� fi; jg 2 E+(G) implies xi = xj (= 1� x0i = 1� x0j).Note that in this ase we have G = Sx2f0;1gn F(x) = E.26



Let ÆF for F = fi; jg 2 G be suh that0 > ÆF � � aii + ajj � 2aij if fi; j) 2 E�(G)aii + ajj + 2aij if fi; jg 2 E+(G):When e = 0, we also allow the hoie ÆF = 0 for all F = fi; jg 2 G.Using the neighborhood funtion F introdued above, the de�ning inequali-ties (8) of the polyhedron Px;Æ (or the inequalities (9) de�ning its perturbed versionbPx;0) simplify to�i(y) + �j(y) � ÆF for all F = fi; jg 2 E+(G) suh that xi = xj = 1 (25)��i(y)� �j(y) � ÆF for all F = fi; jg 2 E+(G) suh that xi = xj = 0 (26)�i(y)� �j(y) � ÆF for all F = fi; jg 2 E�(G) suh that xi = 1; xj = 0 (27)5.2 Constrution of the set X(y) for ase C2We make the same assumptions than in the �rst paragraph of Setion 4.2. Assumethat Y has already been omputed and let y 2 Y . Let Jy again denote the set of theindies j 2 f1; : : : ; ng for whih the value of xj has not been �xed in the ourse ofomputing y. For j 2 f1; : : : ; ngnJy, let xyj denote the already �xed value of the j-thomponent of x. Given a partition (Oy; Zy) of the set f1; : : : ; ng n Jy, we say thatx 2 f0; 1gn is indued by the partition (Oy; Zy) if x is set aording to (22).It an be assumed without loss of generality that�i(y)� �j(y) 6= 0 for all fi; jg 2 E�(G[Jy℄): (28)Indeed, by Corollary 1, this is true when ÆF = 0 for all F 2 G. When ÆF < 0 andwe have �i(y) = �j(y) for F = fi; jg 2 E�(G[Jy℄), then we must neessarily havexi = xj (otherwise property (27) would be violated). Therefore, we an replae G bythe redued graph whih results from G by shrinking the two verties i and j intoa single new vertex and removing the edge fi; jg. If neessary, this shrinking step isrepeated. We will end up with a redued graph, whih for simpliity is again alledG, where �i(y) 6= �j(y) holds for all fi; jg 2 E�(G[Jy℄), whih implies (28).Using assumption (28), it follows that if x satis�es (25){(27), then it alsosatis�es the following system of inequalities:�i(y) + �j(y) � 0 for all fi; jg 2 E+(G[Jy℄) suh that xi = xj = 1 (29)�i(y) + �j(y) > 0 for all fi; jg 2 E+(G[Jy℄) suh that xi = xj = 0 (30)�i(y)� �j(y) < 0 for all fi; jg 2 E�(G[Jy℄) suh that xi = 1; xj = 0 (31)27



Instead of omputing the set X(y) of points x 2 f0; 1gn suh that y 2 Px;Æ,we ompute a superset X 0(y) of X(y) whih ontains all points x 2 f0; 1gn whihful�ll (29){(31). We will proeed in a similar fashion as in Setion 4.2.An initial point ex in X 0(y) an be omputed as follows: Let eOy = fj 2 Jy :�j(y) � 0g and let eZy = fj 2 Jy : �j(y) > 0g. This partition indues a pointex 2 f0; 1gn. All other points in X 0(y) are obtained by ipping the values of exj fora subset of indies j from eOy [ eZy. More spei�ally, let (Oy; Zy) be an arbitrarypartition of f1; : : : ; ng n Jy. De�ne U0!1y = eZy \ Oy and U1!0y = eOy \ Zy (these setsontain the indies j for whih the value of exj will be ipped).In order to guarantee that the partition (Oy; Zy) leads to a point in X 0(y), thefollowing properties have to be ful�lled with respet to the set U0!1y :� U0!1y must be a stable set of the indued subgraph G+[ eZy℄; otherwise prop-erty (29) would be violated by the point x 2 f0; 1gn whih is indued by(Oy; Zy). (The proof of this laim is done along the lines of the similar proof inSetion 4.2).� Observe that by (31), x must satisfyxi � xj for all fi; jg 2 E�(G[Jy℄) suh that �i(y)� �j(y) < 0 (32)(reall again that �i(y) 6= �j(y) for all fi; jg 2 E�(G[Jy℄)). Let S be a maximalstable set of G+[ eZy℄ suh that U0!1y � S. Observe that the point x 2 f0; 1gnindued by the partition (Oy; Zy) ful�lls xj = 1 for all j 2 U0!1y (those ompo-nents hange their value from 0 to 1 when moving from ( eOy; eZy) to (Oy; Zy))and xj = 0 for all j 2 S n U0!1y (those omponents keep their original value 0).Clearly U0!1y must be suh that the following relaxation of (32) is ful�lled:xi � xj for all fi; jg 2 E�(G[Jy \ S℄) suh that �i(y)� �j(y) < 0 (33)Analogous requirements are posed for the set U1!0y .We propose the following proedure to ompute X(y) (atually a superset ofX(y)).Algorithm B0 to ompute X(y) :1. Compute the initial feasible partition ( eOy; eZy) and the point ~x it indues. Add~x to X(y). 28



2. Enumerate the sets S(G+[ eZy℄) and S(G+[ eOy℄) whih denote the sets of all max-imal stable sets in the indued graphs G+[ eZy℄ and G+[ eOy℄, respetively. (Notethat S(G+[ eZy℄) and S(G+[ eOy℄) are subsets of the set of all maximal stable setsof the graph G+.)3. For eah S0 2 S(G+[ eZy℄), onstrut the set XS0 of all solutions to the inequalitysystem (33) resulting for S = S0. Similarly, for eah S1 2 S(G+[ eOy℄), onstrutthe set XS1 of all solutions to the inequality system (32) resulting for S = S1.4. For eah (S0; S1) 2 S(G+[ eZy℄)� S(G+[ eOy℄) perform the following steps:For eah xS0 2 XS0 and xS1 2 XS1, ompute the point x de�ned as follows:xj = 8>>>>><>>>>>: xS0j for j 2 S0xS1j for j 2 S10 for j 2 eZy n S01 for j 2 eOy n S1xyj for j 2 Jy (34)Add x to X(y).The running time of algorithm B0 is determined by steps 2 and 3. Due toondition (a), step 2 an be performed in polynomial time by one of the variousalgorithms that enumerate stable sets, while the polynomiality of step 3 results fromondition (b).In order to omplete the proof of Theorem 2, it remains to be shown that theset of points x 2 f0; 1gn suh that F(x) = ; an be omputed in polynomial time.From the de�nition of the neighborhood funtion F , it follows that if F(x) = ;, thenthe following two properties are ful�lled:� V0 = fi 2 V : xi = 0g and V1 = fi 2 V : xi = 1g are two stable sets of thegraph G+.� There are no edges in E�(G) onneting a vertex in V0 with a vertex in V1.In partiular any onneted omponent of G� is ompletely ontained in either V0or in V1. The existene of a point x suh that F(x) = ; an hene be heked asfollows: First, onstrut the list of onneted omponents of G�, and enumerate theset of all maximal stable sets of the graph G+. Then hek for eah pair (S; S 0) ofmaximal stable sets of G+ suh that S [ S 0 = V , if there exists an assignment of the29



onneted omponents of G� to the stable sets S and S 0 suh that eah onnetedomponent is ompletely inluded in the stable set to whih it has been assigned. Inthe aÆrmative ase, the point x 2 f0; 1gn with xi = 1 for i 2 S and xi = 0 for i 2 S 0satis�es F(x) = ;. Otherwise, we have F(x) 6= ; for all x 2 f0; 1gn.One the existene of a point �x 2 f0; 1gn with no neighbors has been es-tablished, the set of all x with this property an by found as follows: We onsiderall partitions of the set of onneted omponents of G� into two parts and hek ifthe two parts of the partition de�ne stable sets of the graph G+. It remains to beshown this an be done in polynomial time. Denote by n� the number of onnetedomponents of G� and let (V 0; V 1) be the partition of V into two stable sets whihorresponds to �x, i.e. V 0 = fi 2 V : �xi = 0g and V 1 = fi 2 V : �xi = 1g. Supposethat V 0 is the stable set that ontains the largest number of onneted omponents:this number of omponents is at least equal to n�2 . It follows that for eah partialorder indued by an orientation of the edges of E�(G[V 0℄), the number of possibleextensions to a total order is at least 2n�2 . By the assumption of Theorem 2, thenumber of extensions is bounded by a polynomial in n, say p2(n), hene p2(n) � 2n�2and therefore n� � 2 log p2(n). It follows that the number of partitions we have toexamine is at most 2n� � (p2(n))2, i.e., polynomial in n. This onludes the proof ofTheorem 2.6 Comparison with the algorithm of Allemand,Fukuda, Liebling, and SteinerIn their paper [1℄, Allemand, Fukuda, Liebling, and Steiner propose a polynomialalgorithm for solving problem (2) when there is no linear term (i.e.,  = 0) andthe matrix A is negative semide�nite (i.e., �` < 0 for ` = 1; : : : ; d if a spetraldeomposition of A is used, see the explanation in Setion 1 for further details).The algorithm of Allemand et al. involves the enumeration of the extremepoints of a speial polytope, alled zonotope. The reader interested into the pratialimplementation of the method of Allemand et al. is reommended to read the reentpaper of Ferrez, Fukuda, and Liebling [11℄ where an improved method for enumeratingthe extreme points of the zonotope is proposed.
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6.1 Method of Allemand, Fukuda, Liebling, and SteinerIn this setion we briey desribe the method of Allemand et al. [1℄ in a slightly moregeneral framework. We are going to onsider the problem:minx2f0;1gn f(x) = �0 + hu0; xi+ dX̀=1 �` ��` + hu`; xi�2 :The ase treated by Allemand et al. arises by setting u0 = 0 and �` = 0 for all` = 0; : : : ; d.Consider the mapping T from Rn to Rd+1 that transforms a point x into thepoint T (x) = (�0 + hu0; xi; : : : ; �d + hud; xi). The image of the hyperube [0; 1℄n isa speial polytope Qz of Rd+1 , alled zonotope. The ruial observation is that Qzhas O(nd) extreme points, whih an be omputed in O(nd) time (see Allemand etal. [1℄; note that in the speial ase treated in [1℄ the zonotope is d� rather than(d+1)-dimensional). The algorithm in [1℄ evaluates the expression z0+Pd̀=1 �` (z`)2for eah extreme point z = (z0; : : : ; zd) of Qz and keeps the points of smallest value.Observe that, while eah extreme point of Qz is the image of some point x 2 f0; 1gn,not all points in f0; 1gn are transformed into an extreme point of Qz. Therefore, thealgorithm works orretly only if the optimal solution an be shown to be among thepoints x 2 f0; 1gn orresponding to an extreme point of Qz. Allemand et al. observedthat this property is true when the matrix A is negative semide�nite by exploitingthe onavity of the objetive funtion. The next lemma shows that the approah ofAllemand et al. works for a larger lass of instanes of the CR-QP01.Proposition 5 Let I be an instane of the problem CR-QP01 with the property thatall optimal solutions of the ontinuous relaxation of instane I are integral. Then thealgorithm of Allemand et al. solves the instane I to optimality.Proof. We are going to show that if the algorithm of Allemand et al. fails, then thereexists an optimal solution of the ontinuous relaxation that is frational, ontraditingthe assumptions of the theorem.Let x� be an optimal solution of problem CR-QP01 that is not found by thealgorithm of Allemand et al. It follows that the image z� = T (x�) of x� underthe mapping T is not an extreme point of the zonotope Qz. Therefore, z� an bewritten as a onvex ombination of t � 2 extreme points of Qz, say z(1); : : : ; z(t). Let�(j) 2 f0; 1gn be suh that z(j) is the image of �(j) under T , i.e., z(j) = T (�(j)) for31



j = 1; : : : ; t. Hene, there exists a real vetor � = (�1; : : : ; �t) � 0 with Ptj=1 �j = 1suh thatz�̀ = tXj=1 �jz(j)` = tXj=1 �j ��` + hu`; �(j)i�= �` +*u`; tXj=1 �j�(j)+ ` = 0; : : : ; d:But thenPtj=1 �j�(j) is a feasible solution of the ontinuous relaxation with the sameobjetive funtion value than x�. It follows that the ontinuous relaxation has at leastone optimal solution that is frational.Observe that the lass of instanes of the CR-QP01 to whih Proposition 5applies, is a proper superset of the lass of instanes whih arise for negative semidef-inite matries A. Let N denote the lass of all n�n matries A with stritly negativeentries on the main diagonal. It is easy to show that matries A 2 N lead to instanesof the CR-QP01 for whih Proposition 5 is valid. Suppose the ontrary. Let I 0 bean instane resulting from a matrix A0 2 N . Let x� = (x�1; : : : ; x�n) be an optimalsolution of the ontinuous relaxation of I 0, and assume that x�j is frational for somej. Then x�j is the optimal solution of a quadrati optimization problem of the formmin0�xj�1 a0jjx2j +B(x�1; : : : ; x�j�1; x�j+1; : : : ; x�n)xj + C(x�1; : : : ; x�j�1; x�j+1; : : : ; x�n)for some quadrati funtions B and C. Sine a0jj < 0, the optimum annot be attainedat a frational value, ontraditing the assumption.Note that the lass of instanes resulting from matries A 2 N is a speialase of the lass C1 onsidered in Setion 4. This speial ase is obtained by usingthe hypergraph H = (VH ; EH) where EH ontains only edges of size 1 (i.e. H is agraph all of whose edges are loops). It is not diÆult to verify that the onditions ofTheorem 1 are satis�ed for H.It is well-known that the lass of negative semide�nite matries is ontainedin the set of matries with nonpositive entries on the main diagonal. This lass ofmatries is a superset of N . It is easy to see that our algorithm applies to this lassas well sine we either have aii < 0 for all i = 1; : : : ; n, or there exist entries aii = 0.In the �rst ase, the arguments from the paragraph above apply. In the latter ase,the variable xi does not appear in the quadrati part of the objetive funtion whihimplies that the optimal value of xi an easily be obtained from the linear part of the32



objetive funtion. Consequently, our algorithm an be applied to solve the speialase of the CR-QP01 with negative semide�nite A in polynomial time. For the sakeof fairness, it needs to be pointed out, however, that the algorithm of Allemand et al.has a lower omplexity than our algorithm.6.2 Non-dominaneWe now ompare our approah with the approah of Allemand et al. We show thatnone of the two approahes dominates the other with respet to the lass of instanesof the CR-QP01 whih an be solved in polynomial time.We �rst present an instane I1 of the CR-QP01 whih is solvable by our ap-proah, but not by the approah of Allemand et al. Consider the quadrati funtionf(x) = (n2x1 + x2)2 � x1 + 2n2x2 + nXi=3 (2n2 + i)xi!2 :It is easy to hek that the matrix A orresponding to the quadrati part of f satis�esthe ondition aii + ajj + 2jaijj < 0 for 1 � i < j � n. The resulting lass of instanesbelongs to both C1 and C2, and an hene be solved in polynomial time by ourapproah.We are now going to argue that the approah of Allemand et al. fails. Sine thevariables xi; i = 3; : : : ; n, appear only in the seond term, they must take the value1 in an optimal solution of the ontinuous relaxation. Solving the 2-dimensionalproblem in the remaining variables x1 and x2 shows that the unique minimum isattained for x = (�; 1; : : : ; 1) with � = n2+(n�2)(2n2+n+32 )n4�1 (see the appendix for moredetails). Therefore the instane I1 annot be solved by the method of Allemand etal. Next we give an example of an instane I2 whih an be solved by the approahof Allemand et al., but not by our approah. Consider the quadrati funtion givenby f(x) =  nXi=1 (i+ 1)xi + 1!2 � nXi=1 xii !2 :This instane results from the matrix A with entries aij = (i + 1)(j + 1) � 1ij . Itis easy to see that A does neither belong to lass C1 nor to lass C2 (note that33



aii + ajj � 2jaijj � 0 for all i; j). Consequently our methods do not apply. Onthe other hand, f(x) is negative for all x 2 [0; 1℄n, therefore the optimal solutionof the ontinuous relaxation must be integral (see Hammer, Hansen, Pardalos, andRader [15℄), and hene this problem an be solved in polynomial time by the methodof Allemand et al. (and also by the method of Hammer et al.).7 ConlusionsIn this paper, we derived two new polynomially solvable speial ases of the CR-QP01.Our generi algorithm works by enumerating a superset of the set of loal minima ofthe objetive funtion f with respet to a suitably hosen neighborhood.Our results are essentially only of theoretial interest sine our algorithms forthe solution of the speial ases C1 and C2 have running times whih make themunsuited for solving pratial problems for reasonably large values of n. (The mainreason for the high running times is their dependeny on the ardinality of the setY .) It is, however, oneivable that heuristis obtained from the general idea of ourapproah lead to promising results. For example, one ould think of developpingloal searh heuristis based on the neighborhoods used in this paper. Another wayto arrive at a heuristi is to refrain from omputing the full set Y and be insteadsatis�ed with a set Y 0 of randomly seleted points of Rd . Instead of searhing for thebest solution in X(Y ), we then searh for the best solution in X(Y 0).Finally note that the lasses presented in this paper are speial ases of themore general lass de�ned by:Xi;j2F1 aij + Xi;j2F2 aij � 2Xi2F1Xj2F2 aij < 0 for all (F1; F2) 2 EHHwhere HH = (VHH ; EHH) is a \hyperhypergraph" whose edges are pairs fF1; F2gof subsets of VHH (a hypergraph an then be onsidered as the speial ase of ahyperhypergraph with all edges of the form fF; ;g where F is a subset of VHH). Inpartiular, the lass onsidered in Setion 5 orresponds to the hyperhypergraphswith edges fF1; F2g satisfying jF1j + jF2j = 2. This suggests the following question:What onditions on HH ensure that the assoiated instanes of the CR-QP01 an besolved in polynomial time ?
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AppendixIn this appendix we provide more details on the solution of the ontinuous relaxationof the instane I1 of the CR-QP01 whih has been investigated in Setion 6.2. Theresulting quadrati programming problem QP is given by:minx2[0;1℄n f(x) = (n2x1 + x2)2 � x1 + 2n2x2 + nXi=3 (2n2 + i)xi!2
Set h1(x) = n2x1 + x2 and h2(x) = x1 + 2n2x2 + nPi=3(2n2 + i)xi. Hene we anwrite f(x) = (h1(x))2 � (h2(x))2. Sine the variables xi, i = 3; : : : ; n only appear inthe seond term and sine h2(x) � 0, we will have xi = 1, i = 3; : : : ; n in any optimalsolution. Consequently we are left with a funtion in 2 variables:g(x1; x2) = (n2x1 + x2)2 � �x1 + 2n2x2 + (n� 2)�2n2 + n + 32 ��2 :Assume for a moment that the value of the funtion h2(x) at the optimum is known,and let this value be denoted by h�2. Then the optimal solution x� of the QP an beobtained as solution of the following ontinuous knapsak problem:min n2x1 + x2s.t. � x1 + 2n2x2 = h�2 � (n� 2) �2n2 + n+32 �x1; x2 2 [0; 1℄:Sine n21 > 12n2 , it is well known that the optimum solution is either of the form(x1; x2) = (0; �) or (x1; x2) = (�; 1) with 0 � � � 1. The minimum ofg(0; �) = �2 � �2n2�+ (n� 2)�2n2 + n+ 32 ��2on [0; 1℄ is attained for � = 1 (observe, for example, that the derivative of g(0; �) withrespet to � is negative). 37



On the other hand, we haveg(�; 1) = (n2�+ 1)2 � ��+ 2n2 + (n� 2)�2n2 + n+ 32 ��2 :By setting the derivative of h(�) = g(�; 1) equal to 0, we obtain that the minimumof g is attained for~� = n2 + (n� 2) �2n2 + n+32 �n4 � 1 :Note that ~� 2 [0; 1℄. Observing that g(~�; 1) < g(0; 1), we onlude that the minimumof f over [0; 1℄n is obtained for x = (~�; 1; : : : ; 1), as laimed in Setion 6.2.
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