
Assignment Problems�Eranda C�elayAbstractAssignment problems arise in di�erent situations where we have to �nd anoptimal way to assign n objects to m other objects in an injective fashion.Depending on the objective we want to optimize, we obtain di�erent problemsranging from linear assignment problems to quadratic and higher dimensionalassignment problems.The assignment problems are a well studied topic in combinatorial opti-mization. These problems �nd numerous application in production planning,telecommunication, VLSI design, economics, etc.We introduce the basic problems classi�ed into three groups: linear as-signment problems, three and higher dimensional assignment problems, andquadratic assignment problems and problems related to it. For each group ofproblems we mention some applications, show some basic properties and de-scribe brie
y some of the most successful algorithms used to solve these prob-lems.1 IntroductionAssignment problems deal with the question how to assign n objects to m otherobjects in an injective fashion in the best possible way. An assignment problemis completely speci�ed by its two components: the assignments - which representthe underlying combinatorial structure, and the objective function to be optimizedwhich models \the best possible way".In the classical assignment problem one has m = n and most of the problems withm > n can be transformed or are strongly related to analogous problems withm = n.Therefore, we will consider m = n through the rest of this chapter, unless otherwisespeci�ed.�This research has been supported by the Spezialforschungsbereich F 003 \Optimierung undKontrolle", Projektbereich Diskrete Optimierung.yTechnical University Graz, Institute of Mathematics, Steyrergasse 30, A-8010 Graz, Austria,E-mail: cela@opt.math.tu-graz.ac.at 1



From the mathematical point of view an assignment is a bijective mapping of a �niteset N = f1; 2; : : : ; ng into itself, i.e., a permutation � assigning some j = �(i) toeach i 2 N . The set of all permutations (assignments) of n items will be denoted bySn and has n! elements. Every permutation � of the set N = f1; : : : ; ng correspondsuniquely to a permutation matrix X� = (xij) with xij = 1 for j = �(i) and xij = 0for j 6= �(i). Thus a permutation matrix X = (xij) can be de�ned as a matrix whichful�lls the following conditions, so-called assignment constraintsnXi=1 xij = 1 for all j = 1; : : : ; nnXj=1 xij = 1 for all i = 1; : : : ; n (1)xij 2 f0; 1g for all i; j = 1; : : : ; nBy replacing the conditions xij 2 f0; 1g by xij � 0 in (1), we get a doubly stochasticmatrix . The set of all doubly stochastic matrices forms the assignment polytopePA. Due to a famous result of (Birkho�, 1946), the assignment polytope PA is theconvex hull of all assignments, or equivalently, every doubly stochastic matrix canbe written as convex combination of permutation matrices.The concept of an assignment is strongly related to another well known conceptin graph theory and in combinatorial optimization, matching in bipartite graphs.A bipartite graph G is a triple (V;W ;E), where the vertex sets V and W have novertices in common and the edge set E is a set of pairs (i; j) where i 2 V and j 2 W .A subset M of E is called a matching , if every vertex of G is incident with at mostone edge from M . The cardinality of M is called cardinality of the matching. Themaximum matching problem asks for a matching with as many edges as possible. AmatchingM is called a perfect matching , if every vertex of G is incident with exactlyone edge from M . Evidently, every perfect matching is a maximum matching. Aperfect matching in a bipartite graph G = (V;W ;E) with V = fv1; v2; : : : ; vng,W = fw1; w2; : : : ; wng can be represented by a permutation �M of f1; 2; : : : ; ng suchthat �M(i) = j if and only if (vi; wj) 2M . Hence a perfect matching in a bipartitegraph is an assignment.(Hopcroft and Karp, 1973) gave an O(jEjpjV j)-algorithm which constructs a perfectmatching if it exists. (Even and Tarjan, 1975) gave an O(pjV jjEj) algorithm forthe maximum 
ow problem on unit capacity simple networks, algorithm which canalso be applied to �nd a matching of maximum cardinality in a bipartite graph.(Alt et al., 1991) gave an O(jV j1:5pjEj= log jV j) implementation for the Hopcroft-Karp algorithm. Based on ideas similar to those in (Hopcroft and Karp, 1973), afast randomized Monte-Carlo algorithm is given by (Mulmuley et al., 1087). This2



algorithm �nds a perfect matching at costs of a single matrix inversion. The readeris referred to the bibliography in (Burkard and C� ela, 1999) for further referencepointers related to algorithms for cardinality matching problems.2 Linear Assignment ProblemsThe linear assignment problem (LAP) is one of the oldest and most studies prob-lems in combinatorial optimization. Many di�erent algorithms have been developedto solve this problem. Also other aspects of the problem as the asymptotic behav-ior or special cases have been thoroughly investigated. The reader is referred to(Dell'Amico and Martello, 1997) for a comprehensive annotated bibliography andto (Burkard and C�ela, 1999) for a recent review on assignment problems.2.1 Problem de�nition and applicationsRecall the original model where n items are to be assigned to n other objects inthe best possible way. Let cij be the cost incurred by the assignment of object ito object j. We are looking for an assignment � which minimizes the overall castPni=1 ci�(i). Thus, the linear assignment problem (LAP) is given as followsmin�2Sn nXi=1 ci�(i) ; (2)where Sn is the set of permutations of f1; 2; : : : ; ng. Based on the description (1) ofthe set of all assignments (see Section 1), the LAP can also be formulated as follows:minPij cijxij over all matrices X = (xij) which ful�ll (1).Due to Birkho�'s result we can relax the conditions xij 2 f0; 1g to xij � 0 andobtain the linear programming formulation of the LAP. Any basic solution of thislinear program corresponds to a permutation matrix.min nXi=1 cijxijnXi=1 xij = 1 j = 1; : : : ; nnXj=1 xij = 1 i = 1; : : : ; nxij � 0 i; j = 1; : : : ; n. (LP)3



As we will mention in the next section many algorithms for the LAP are basedon linear programming techniques and consider often the dual linear program:max nXi=1 ui + nXj=1 vjui + vj � cij i; j = 1; : : : ; nui; vj 2 IR i; j = 1; : : : ; n, (3)where ui and vj , 1 � i; j � n, are dual variables.Among the numerous applications of the LAP the so-called personnel assignmentsare the most typical. In the personnel assignment we want to assign people toobjects, e.g. jobs, machines, rooms, to other people etc. Each assignment has a\cost" and we want to make the assignment so as to minimize the overall sum ofthe costs. For example one company might want to assign graduates to vacant jobsIn this case the cost cij is given by cij = �pij where pij is the pro�ciency indexfor placing candidate i to job j, and the goal is to assign each candidate i to somevacancy �(i) such that the overall cost Pi ci�(i) is minimized, or equivalently, theoverall pro�ciency Pi pi�(i) is maximized.There are many other applications of the linear assignment problem e.g. in locatingand tracing objects in space, scheduling on parallel machines, inventory planning,vehicle and crew scheduling, wiring of typewriters etc. The reader is referred to(Ahuja et al., 1995) and (Burkard and C�ela, 1999) for a detailed description of someapplications of the LAP and literature pointers to other applications.2.2 Algorithms for the LAPThe LAP can be solved e�ciently, and the design of e�cient solution methods forthis problem has been an object of research for many years. There exists an amazingamount of algorithms, sequential and parallel, for the LAP, ranging from primal-dual combinatorial algorithms, to simplex-like methods. The worst-case complexityof the best sequential algorithms for the LAP is O(n3), where n is the size of theproblem. From the computational point of view very large scale dense assignmentproblems with about 106 nodes can be solved within a couple of minutes by sequentialalgorithms, see (Lee and Orlin, 1994).There is a number of survey papers and books on algorithms, among others (Derigs,1985), (Dell'Amico and Toth, 2000) and the book on the �rst DIMACS challengeedited by (Johnson and McGeoch, 1993). Among papers reporting on computationalexperience we mention (Carpaneto et al., 1988; Lee and Orlin, 1994; Dell'Amico andToth, 2000) and some of the papers in (Johnson and McGeoch, 1993).4



Most sequential algorithms for the LAP can be classi�ed into primal-dual algorithmsand simplex-based algorithms. Primal-dual algorithms work with a pair consisting ofan infeasible solution xij , 1 � i; j � n, of LP (called primal solution), and a feasiblesolution ui; vj , 1 � i; j � n of the dual (3) (called dual solution). These solutionsful�ll the complementarity slackness conditions:xij(cij � ui � vj) = 0 ; for 1 � i; j � n (4)These solutions are updated iteratively until the primal solution becomes feasible,while keeping the complementary slackness conditions ful�lled and the dual solutionfeasible. At this point the primal solution would be optimal, according to dualitytheory.Di�erent primal-dual algorithms di�er on 1) the way they obtain a starting pair ofa primal and a dual solution ful�lling the conditions described above, and 2) theway the solutions are updated. A starting dual solution can be obtained as in theHungarian method by setting ui := minfcij : 1 � j � ng, for 1 � i � n, and thenvj := minfcij � ui: 1 � i � ng, for 1 � j � n. An infeasible primal starting solutioncould be given by a matching of maximal cardinality in the bipartite graph �G =(V;W ; �E), where V = W = f1; 2; : : : ; ng, and �E = f(i; j):�cij := cij � ui � vj = 0g.Then, set xij := 1 if (i; j) is an edge of the matching and xij = 0, otherwise. Clearly,the pair of solutions obtained in this way ful�ll the complementarity slackness con-ditions. One way of updating the pair of solutions is the shortest augmenting pathmethod. This method gives raise to a whole class of algorithms which meet thebest known time complexity bound for the LAP, namely O(n3). For a given pairof solutions as above construct a weighted directed bipartite graph ~G = (V;W ; ~E)with arc set ~E = D[R with set of forward arcs D = f(i; j): (i; j)2 E; xij = 0g andset of backward arcs R = f(j; i): (i; j) 2 �E; xij = 1g. The weights of the backwardarcs are set equal to 0, whereas the weights of the forward arcs are set equal tothe corresponding reduced costs �cij . Then select a node r in V which has not beenassigned yet, and solve the single-source shortest path problem, i.e., compute theshortest paths from r to all nodes of ~G. The shortest among all paths from r to somefree node in W is used to augment the current primal solution by swapping the freeand matched edges. The dual solution and the reduced costs are then accordinglyupdated. It can be shown that after n augmentations an optimal primal solutionresults, see (Derigs, 1985).There are various shortest augmenting path algorithms for the LAP. Basically theydi�er in the way they determine a starting pair of primal and dual solutions, andby the subroutine they use for computing the shortest paths. Most of the existingalgorithms use the Dijkstra algorithm for the shortest path computations.Simplex-based algorithms are special implementations of the primal or the dualsimplex algorithm for linear programming applied to LP. Simplex-based algorithms5



for the LAP are speci�c implementations of the network simplex algorithm. Thelatter is a specialization of the simplex method for linear programming to networkproblems. The specialization relies on exploiting the combinatorial structure ofnetwork problems to perform e�cient pivots acting on trees rather than on thecoe�cient matrix.It is well known that there is a one-to-one correspondence between primal (integer)basic solutions of the LAP and spanning trees of the bipartite graph G related toassignment problems as described in Section 1. Moreover, given a spanning tree,one can uniquely determine the values of the corresponding dual variables so asto ful�ll the complementarity slackness conditions, as soon as the value of one ofthose variables is �xed (arbitrarily). Every integer primal feasible basic solution ishighly degenerate because it contains 2n � 1 variables and n � 1 of them are equalto 0. Hence degeneracy poses a problem, and the �rst simplex-based algorithms forthe LAP were exponential. The �rst steps towards the design of polynomial-timesimplex-based algorithms were made by introducing the concept of so-called stronglyfeasible trees , introduced by (Cunningham, 1976). There are implementations ofsimplex-based algorithm for the LAP which match the best known time complexitybound of O(n3). The reader is referred to (Burkard and C� ela, 1999) for referencesand further details.More recently (Ramakrishnan et al., 1993) applied an interior point algorithm to theLAP and got promising results, in particular for large size instances, see (Johnsonand McGeoch, 1993).Since the late 1980s a number of parallel algorithms for the LAP has been proposed.The speed-up achieved by such algorithms is limited by the sparsity of the costmatrices and/or the decreasing load across the iterations. For a good review onparallel algorithms for the LAP and network 
ow problems in general the reader isreferred to (Bertsekas et al., 1995).2.3 Asymptotic behavior and probabilistic analysisWhen dealing with the asymptotic behavior of the LAP, it is always assumed thatthe cost coe�cients cij are independent random variables (i.r.v.) with a commonprespeci�ed distribution. The main question concerns the behavior of the expectedoptimal value of the problem as its size tends to in�nity.For cost coe�cients cij being i.r.v. with a uniform distribution on [0; 1] it has beenshown that the optimal value of the LAP remains within constant bounds as thesize n of the problem tends to in�nity. The best upper bound equals 2 and is due to(Karp, 1987). The best lower bound equals 1.51 and is due to (Olin, 1992). Althoughthe gap between the current lower and upper bounds on the expected optimal valueof the LAP is large, it is believed that the expected value is close to 1:6 or more6



exactly �26 in the case of independent cost coe�cients cij uniformly distributed on[0; 1]. For a discussion in some details and for more references see (Burkard andC� ela, 1999).A more general scenario where the coe�cients cij are i.r.v. with a common arbitrarygeneral distribution has been investigated by (Frenk et al., 1987) and (Olin, 1992).Under mild assumption on the probability distribution of the coe�cients the authorsderive constant upper and lower bounds on the expected optimal value of the LAP.In the case of coe�cients cij being i.r.v. uniformly distributed on [0; 1], the LAPcan be solved in expected O(n2 logn) time by a randomized algorithm proposedby (Karp, 1980). Faster randomized algorithms which produce a solution whoseobjective function value is within a constant factor of the optimal objective functionvalue have been proposed by several authors. There is for instance an algorithm of(Karp et al., 1994) which runs in expected linear time (O(n)) and provides a solutionwithin a factor of 3+O(n�a)) of the optimum with probability 1�O(n�a), where ais some �xed positive number. The best known linear assignment problem with anobjective function di�erent from that of the LAP is the bottleneck linear assignmentproblem (BLAP) min� max1�i�n ci�(i) : (5)considered originally by (Fulkerson et al., 1953). This problem occurs e.g. in theassignment of jobs to parallel machines so as to minimize the latest completiontime. One of the �rst algorithms proposed for the BLAP is the so-called thresholdalgorithm. The threshold algorithm chooses a cost element c�ij =: K - the thresholdvalue - and constructs a matrix �C de�ned as follows�cij := ( 1 if cij > K0 if cij � KThen the algorithm checks whether the bipartite graph with adjacency matrix �Ccontains a perfect matching or not. The algorithms repeats than this procedurefor a new (and eventually smaller) value of the threshold K. The smallest valueK for which the corresponding bipartite graph contains a perfect matching, is theoptimum value of the BLAP. The best time complexity known today amounts toO(npnm) and is due to (Punnen and Nair, 1994). (Here m is the number of �niteelements in the coe�cient matrix (cij) which would correspond to the number ofedges of the bipartite graph in the graph theoretical setting.)A randomized algorithm with quadratic expected running time (O(n2)) has beengiven by (Pferschy, 1996). A computational study on the comparison of di�erentdeterministic algorithms for the BLAP has been given by (Pferschy, 1997).7



Another linear assignment problem introduced by (Burkard and Rendl, 1991) is theso-called lexicographic bottleneck assignment problem (LexBAP). In the LexLAP wewant to �nd a permutation (assignment) �� which lexicographically minimizes c�over all permutation �, where c� is the vector of costs ci�(i), 1 � i � n, sortednon-increasingly.(Martello et al., 1984) have considered the so-called balanced assignment problem(BalAP). Given a real n�n matrix C = (cij), the balanced assignment problem canbe formulated as min� �maxi ci�(i) �mini ci�(i)� :The problem can be solved e�ciently in O(n4) time.A more general linear assignment problem which includes as special cases the linearassignment problem (2) and the bottleneck assignment problem (5) is the algebraicassignment problem (AAP) introduced by (Burkard et al., 1977). In the AAP thecoe�cients cij are elements of a totally ordered semigroup (H; �;�) with composition� and order relation �. The AAP can then be formulated as follows:min�2Sn c1�(1) � c2�(2) � � � � � cn�(n) : (6)The AAP can be solved e�ciently if the order relation and the composition ful�llsome natural algebraic properties. For further results and reference pointers consultthe survey on algebraic optimization by (Burkard and Zimmermann, 1982).2.4 Available computer codes and test instancesFORTRAN listings of codes for the LAP and the LBAP can be found in the bookby (Burkard and Derigs, 1980). The code for the LAP is a primal-dual algorithmbased on shortest path computations done by a version of Dijkstra's algorithm.Source codes of another primal-dual algorithm for the LAP and the LBAP canbe downloaded from http://207.158.230.188/assignment.html. One can chooseamong a C++, a PASCAL, and a FORTRAN implementations of an algorithm of(Jonker and Volgenant, 1986).A (compressed) FORTRAN source �le - called 548.Z - of an implementation of theHungarian algorithm, due to (Carpaneto and Toth, 1980), can be downloaded fromftp://netlib.att.com in /netlib/toms. Other listings of FORTRAN codes forthe LAP can be found in (Carpaneto et al., 1988). The codes are available from the
oppy disk included in the book.The C code of an e�cient implementation of the scaling push-relabel algorithm of(Goldberg and Kennedy, 1995) for the LAP can be downloaded from Goldberg's8



network optimization library athttp://www.neci.nj.nec.com/homepages/avg/soft.html.Finally, listings of 5 FORTRAN codes of auction algorithms for the LAP can befound in Bertsekas' homepage athttp://web.mit.edu/dimitrib/www/auction.txt.Test instances of the LAP can be downloaded as ascii �les from the homepage ofthe OR-Library maintained by J. Beasley athttp://mscmga.ms.ic.ac.uk/pub.Other test instances can be obtained from the ELIB library atftp://ftp.zib.de/pub/Packages/mp-testdata/assign/index.html.Clearly, since the LAP can be formulated as as a minimum cost 
ow problem,algorithms developed for the later can also be applied to the LAP. However, suchalgorithms are not supposed to exploit the speci�c features of the LAP, and hencemay not be competitive with algorithms developed especially for the LAP. BesidesGoldberg's network optimization library and Bertsekas' homepage, other codes fornetwork optimization can be found in Netlib athttp://www.OpsResearch.com/OR-Links/index.html.Furthermore, C codes of implementations of the primal and the dual network simplexalgorithm, due to L�obel, can be obtained throughhttp://www.zib.de/Optimization/index.de.html.3 Multidimensional Assignment Problems3.1 General Remarks and ApplicationsMulti-dimensional (sometimes referred asmulti-index) assignment problems (MAP)are natural extensions of the linear assignment problem. They have been consideredfor the �rst time by (Pierskalla, 1967). The most prominent representatives of thisclass are axial and planar 3-dimensional assignment problems to be considered in thenext section. The MAP asks for d�1 permutations �1; �2; : : : ; �d�1 which minimizethe following objective function:min�1;�2;:::;�d�1 nXi=1 ci�1(i)�2(i):::�d�1(i) :In terms of graphs a multidimensional assignment problem can be described asfollows: Let a complete d-partite graph G = (V1; V2; : : : ; Vd;E) with vertex sets Vi,jVij = n, i = 1; 2; : : : ; d, and edge set E be given. A subset X of V = Sdi=1 Vi is a9



clique, if it meets every set Vi in exactly one vertex. A d-dimensional assignment isa partition of V into n pairwise disjoint cliques. If c is a real valued cost functionde�ned on the set of cliques of G = (V1; V2; : : : ; Vd;E), the d-dimensional assignmentproblem asks for a d-dimensional assignment of minimum cost. Special cases wherethe costs c of a clique are not arbitrary, but given as a function of elementary costsattached to the edges of the complete d-partite graph (eg. sum costs, star costs, tourcosts or tree costs) have been investigated and the performance of simple heuristicshas been analyzed in these cases. For more information see e.g. (Burkard and C� ela,1999) and the references therein.Multidimensional assignment problems in their general form have found some ap-plications as a means to solve data association problems in in multi-target trackingand multi-sensor surveillance. The data association problem consists in partitioningthe observations into tracks and false alarms in real time. General classes of theseproblems can be formulated as multidimensional assignment problems. Other appli-cations of MAPs are related to track initiation, track maintenance, and multi-sensortracking. Another interesting MAP arises in the context of tracking elementary par-ticles. For more information on these two applications see (Burkard and C�ela, 1999)and the references therein.3.2 Axial 3-Dimensional Assignment ProblemsConsider n3 cost coe�cients cijk . The axial 3-dimensional assignment problem (3-DAP) can then be stated asmin nXi=1 nXj=1 nXk=1 cijkxijks.t. nXj=1 nXk=1 xijk = 1 ; i = 1; 2; : : : ; n ;nXi=1 nXk=1 xijk = 1; i = 1; 2; : : : ; n ; (7)nXi=1 nXj=1 xijk = 1; i = 1; 2; : : : ; n ;xijk 2 f0; 1g 8 1 � i; j; k � n :We can think of cijk as the cost of assigning job j to be performed by worker i inmachine k. It follows that xijk = 1, if job j is assigned to worker i in machine k,and xijk = 0, otherwise. 10



Equivalently, a 3-DAP can be described with the help of two permutations � and  min�; 2Sn nXi=1 ci�(i) (i): (8)Thus this problem has (n!)2 feasible solutions. It has been shown that the dimensionof the axial 3-index assignment polytope (i.e., the convex hull of feasible solutions toproblem (7)) is n3�3n+2. Furthermore several classes of facet de�ning inequalitieshave been identi�ed and e�cient algorithms for the separation of these facets havebeen developed. For more information on these topic see the description in (Burkardand C�ela, 1999) and consult the references cited therein.In contrast to the linear assignment problem LAP the 3-DAP cannot be solvede�ciently and branch and bound algorithms are the mostly used algorithms to solvethis problem. The lower bounds are usually computed by solving some Lagrangeanrelaxation of the 3-DAP by subgradient optimization approaches, see e.g. (Balas andSaltzman, 1991). The authors introduce in (Balas and Saltzman, 1991) also a non-trivial branching strategy which exploits the structure of the problem and allows to�x several variables at each branching node.A heuristic for solving the 3-DAP has been proposed by (Pierskalla, 1967).Finally, there exists a number of e�ciently solvable special cases of the 3-DAP, e.g.if the cost coe�cients are taken from a 3-dimensional Monge array or if the costcoe�cients are decomposable, i.e., cijk = uivjwk and ui; vj , and wk are nonnegative.The reader is referred to (Burkard and C� ela, 1999) and the references therein formore information on this topic.3.3 Planar 3-Dimensional Assignment ProblemsLet cijk , 1 � i; j; k � n, be n3 cost coe�cients. The planar 3-dimensional assignmentproblems (3-PAP) is stated as follows:min nXi=1 nXj=1 nXk=1 cijkxijks.t. nXi=1 xijk = 1 ; j; k = 1; 2; : : : ; n ; (9)nXj=1xijk = 1 ; i; k = 1; 2; : : : ; n ;nXk=1 xijk = 1 ; i; j = 1; 2; : : : ; n ;11



xijk 2 f0; 1g i; j; k = 1; 2; : : : ; n :The 3-PAP has interesting applications in time tabling problems. See (Euler and LeVerge, 1996) for a recent study on time tables and related polyhedra.It is easily seen that the feasible solutions of the 3-PAP correspond to Latin squares.Thus, the number of feasible solutions of a 3-PAP of size n equals the number ofLatin squares of order n, and hence increases very fast. Similarly to the 3-DAP alsothe 3-PAP is a hard problem and cannot be solved e�ciently. There are not manyalgorithms known for the 3-PAP. Besides two branch and bound algorithms due to(Vlach, 1967) and (Magos and Miliotis, 1994) there is also a tabu search algorithmfor the 3-PAP due to (Magos, 1996). It uses a neighborhood structure based on therelationship between the 3-PAP and the latin squares. See e.g. (Burkard and C� ela,1999) for more information on algorithms for the 3-PAP.4 The Quadratic Assignment ProblemThe quadratic assignment problem (QAP) was introduced in 1957 by Koopmansand Beckmann as a model for a plant location problem. Since then the QAP hasbeen object of intensive investigations concerning di�erent aspects of the problemranging from algorithms to asymptotic behavior and special cases. In contrast to itslinear counterpart the QAP can not be solved e�ciently. However there are somerestricted cases of the QAP which can be solved in polynomial time. Such specialcases are QAPs whose coe�cient matrices show special combinatorial properties,e.g. Monge and Monge-like properties. The interested reader is referred to (C� ela,1998) for a detailed discussion on e�ciently solvable special cases of the QAP.Also from the practical point of view the QAP is widely considered as one of thehardest problems in combinatorial optimization and there are instances of size 24which can not yet be solved to optimality in reasonable computational time, e.g. theNugent instance of size [24], see QAPLIB (Burkard et al., 1997)The reader is referred to (Burkard and C� ela, 1997) for a comprehensive annotatedbibliography, to (C� ela, 1998) for a recent monograph, and to (Burkard et al., 1998)for a recent review on quadratic assignment problems and for reference pointers.4.1 Problem de�nition and applicationsAmong the most common and best known applications of the QAP are those whicharise in a facility location context. This is one reason for choosing the facility locationterminology to introduce the problem.Consider the problem of allocating n facilities to n locations, with costs dependingon the distance between the locations and the 
ow between the facilities, plus costs12



associated with a facility being placed at a certain location. The objective is to assigneach facility to a location such that the total cost is minimized. More speci�cally,we are given three n � n real matrices A = (aij), B = (bkl) and C = (cik), whereaij is the 
ow between the facility i and facility j, bkl is the distance between thelocation k and location l, and cik is the cost of placing facility i at location k. TheKoopmans-Beckmann version of the QAP can be then formulated as follows:min�2Sn0@ nXi=1 nXj=1 aijb�(i)�(j) + nXi=1 ai�(i)1A (10)where Sn is the set of all permutations of N . A product aijb�(i)�(j) is the cost ofassigning facility i to location �(i) and facility j to location �(j).A more general version of the QAP was introduced by Lawler in 1963. In this versionwe are given a four-dimensional array D = (dijkl) of coe�cients instead of the twomatrices A and B, and the problem can be stated asmin�2Sn0@ nXi=1 nXj=1dij�(i)�(j) + nXi=1 ci�(i)1A : (11)Besides applications in facility location the QAP �nds applications in VLSI design,computer manufacturing, scheduling, process communications, backboard wiringand typewriter keybord design. We describe here a less known application on turbinebalancing. Hydraulic turbine runners as used in electricity generation consist of acylinder around which a number of blades are welded at regular spacings. Due toinaccuracies in the manufacturing process, the weights of these blades di�er slightly,and it is desirable to locate the blades around the cylinder in such a way thatthe distance between the center of mass of the blades and the axis of the cylinderis minimized. This problem was introduced by Mosevich in 1986 and has beenformulated as a QAP by (Laporte and Mercure, 1988). The places at regular spacingson the cylinder are modeled by the vertices v1; : : : ; vn of a regular n-gon on the unitcircle in the Euclidean plane. Thusvi = �sin�2i�n � ; cos�2i�n �� ; 1 � i � n.The masses of the n blades are given by the positive reals 0 < m1 � m2 � � � � � mn.The goal is to assign each massmi to some vertex v�(i) in such a way that the centerof gravity nXi=1m�(i) sin(2i�n )cos(2i�n )! ;13



of the resulting mass system is as close to the origin as possible. Minimizing theEuclidean norm of the above vector is equivalent to minimizing the expressionnXi=1 nXj=1m�(i)m�(j) cos�2(i� j)�n � : (12)Thus we have a quadratic assignment problem, where the coe�cient matrices A andB have a very special structure: aij = cos �2(i�j)�n � and bij = mi �mj .Finally, notice that there are a number of other well known combinatorial optimiza-tion problems which can be formulated as QAPs, e.g. graph partitioning, maximumclique, the traveling salesman problem, the linear arrangement problem, and theminimum weight feedback arc set problem.To conclude this section notice that the QAP is a \very hard" problem from thetheoretical point of view. Not only that the QAP cannot be solved e�ciently but iteven cannot be approximated e�ciently within some constant approximation ratio.Furthermore, also �nding local optima is in general not a trivial task. For informa-tion and references concerning the computational complexity of the QAP see (C� ela,1998).4.2 Alternative formulations of the QAPThere exist several equivalent formulation of the QAP. Di�erent formulations stressdi�erent characteristics of the problem and lead to di�erent solution approaches.Recall that there is a one-to-one correspondence between the permutations of N =f1; 2; : : : ; ng and the n�n permutation matrices de�ned in Section 1. Let Xn be theset of n � n permutation matrices. In terms of permutation matrices QAP(A,B,C)can be formulated as the following quadratic integer program:min nXi=1 nXj=1 nXk=1 nXl=1 aijbklxikxjl + nXi;j=1 cijxij (13)s.t. (xij) 2 Xn (14)Let us de�ne an inner product between n � n matrices as followshA;Bi := nXi=1 nXj=1 aijbij ;Clearly, we haveXAXT = (a�(i)�(j)), for some n�n matrix A, a permutation � 2 Snand the associated permutation matrix X 2 Xn. Thus the QAP (13)-(14) can be14



formulated alternatively asmin hA;XBXTi+ hC;Xi (15)s.t. X 2 Xn:Finally consider the trace formulation of the QAP. The trace tr(A) of an n � nmatrix A = (aij) is de�ned as sum of its diagonal elements: tr(A) = Pni=1 aii. Letus denote B� := XBtX t, where X is the permutation matrix corresponding to �.We get tr(AB�) = nXi;j=1 aijb�ji = nXi;j=1 aijb�(i)�(j) ;since b�ij = b�(i)�(j), for i; j 2 f1; 2; : : : ; ng. Since tr(CX t) =Pni=1 ci�(i), the QAP in(15) can be formulated as min tr(AXBT + C)XT (16)s.t. X 2 Xn:4.3 LinearizationsA �rst attempt to solve the QAP would be to eliminate the quadratic term in theobjective function (13), in order to transform the problem into a (mixed) 0-1 linearprogram (MILP). The linearization of the objective function is usually achieved byintroducing new variables and new linear (and binary) constraints. The very largenumber of new variables and constraints, however, poses an obstacle for e�cientlysolving the resulting linear integer programs. The optimal value of an LP relaxationof some MILP formulation is a lower bound for the QAP. In this context the \tight-ness" of the continuous relaxation of the linear integer program mentioned above isa desirable property. Several linearizations of the QAP have been proposed in theliterature, e.g. by (Lawler, 1963), by (Kaufmann and Broeckx, 1978) (this lineariza-tion has the smallest number of variables and constraints), by (Frieze and Yadegar,1983) and by (Adams and Johnson, 1994). The last linearization uni�es most of theprevious linearizations and is important for getting lower bounds. The QAP witharray of coe�cients C = (dijkl) is proved to be equivalent to the following mixed 0-1linear program min nXi;j=1 nXk;l=1 dijklyijkls.t. (xij) 2 Xn;15



nXi=1 yijkl = xjl; j; k; l = 1; : : : ; n;nXk=1 yijkl = xjl; i; j; l = 1; 2; : : : ; n;yijkl = yjilk; i; j; k; l = 1; : : : ; n;yijkl � 0; i; j; k; l = 1; 2; : : : ; n;where each yijkl represents the product xikxjl. Although as noted by (Adams andJohnson, 1994) a signi�cant smaller formulation in terms of both the variables andconstraints could be obtained, the structure of the continuous relaxation of the aboveformulation is favorable for solving it approximately by Lagrangean dual methods.The theoretical strength of the linearization (17) relies on the fact that the con-straints of the continuous relaxations of previous linearizations can be expressed aslinear combinations of the constraints of the continuous relaxation of (17). More-over, many of the previously published lower-bounding techniques can be explainedbased on the Lagrangean dual of this relaxation. For more details on this topic werefer to Section 4.4.2.4.4 Lower boundsLower bounding techniques are used within implicit enumeration algorithms, suchas branch and bound, to perform a limited search of the set of feasible solution, untilan optimal solution is found. Numerous bounding techniques have been developedfor the QAP so far. The most successful bounding techniques for the QAP canbe classi�ed in 3 groups: Gilmore-Lawler type lower bounds, bounds based on LPrelaxation, eigenvalue related bound4.4.1 Gilmore-Lawler type lower boundsThe basic idea of these type of lower bounds goes back to the early 60s when(Gilmore, 1962) and (Lawler, 1963) developed the so-called Gilmore-Lawler bound(GLB) for the QAP. Nowadays the Gilmore-Lawler type lower bounds and especiallythe GLB are the most frequently used bounds within branch and bound algorithmsfor the QAP. The most advantageous property of these bounds is that they can becomputed e�ciently. The main drawback is the fast deterioration of their qualitywith increasing problem size.To compute the GLB for a given QAP of size n one has to solve n2 +1 LAPs, n2 ofthem of size n � 1 and the last one of size n, as described below.Consider an instance of the Lawler QAP (11) with coe�cients D = (dijkl). For eachordered pair of indices (i; k), 1 � i; k � n, solve an LAP with coe�cient matrix16



D(i;k) = (dijkl) under the additional constraint that �(i) = k. Let us denoted bylik the optimal solutions of the above mentioned LAP. Finally, solve an LAP withcoe�cient matrix (lij + cij); its optimal value is the GLB. Since the LAP can besolved e�ciently, also the GLB can be computed e�ciently.Several Gilmore-Lawler type lower bounds have been developed aiming at improvingthe quality of the GLB. One of the ideas on which such bounds are based are the so-called reduction methods. These methods decompose each quadratic cost coe�cientinto several terms so as to guarantee that some of them end up in being linear costcoe�cients and can be moved to the linear term of the objective function. Thiswould yield a tighter lower bound because the LAP can be solved exactly.More recently another bounding procedure which shares the basic idea of the GLBhas been proposed by (Hahn and Grant, 1998). This procedure combines GLB ideaswith reduction steps in a general framework. The resulting bound (HGB) shows agood trade o� between computation time and bound quality when tested in instancesfrom QAPLIB, see (Burkard et al., 1997).4.4.2 Bounds based on linear programming relaxationsConsider a mixed integer linear programming (MILP) formulations of the QAP.Clearly, the optimal solution of the continuous relaxation of an MILP formulationis a lower bound for the optimal value of the corresponding QAP. Moreover, eachfeasible solution of the dual of this relaxation is also a lower bound. Even for QAPsof moderate size it is practically impossible to solve to optimality the LP relaxationsof any MILP formulation. Generally, such formulations are highly degenerated andalready for QAPs of moderate size the memory requirements become prohibitiveas shown by (Resende et al., 1995). The LP relaxations of the MILPs are there-fore approximately solved by applying subgradient optimization based techniquesor Lagrangean relaxations. Adams et al. have shown that a particular Lagrangeanrelaxation of the MILP (17) can be solved e�ciently for each �xed set of Lagrangeanmultipliers, see (Adams and Johnson, 1994). The Lagrangean multipliers are thenupdated iteratively in the fashion of a dual ascent procedure. The strength of themethod of Adams and Johnson relies on the fact that it can produce all Gilmore-Lawler-like bounds described in Section 4.4.1 and others, but the HGB, for di�erentsettings of the Lagrangean multipliers.Recently (Karisch et al., 1999) have shown that although HGB cannot be obtainedby applying the algorithm of Adams and Johnson, both AJB and HGB can beobtained as feasible solutions of the dual of the continuous relaxation of the MILPformulation (17). Karisch et al. propose an iterative algorithm to approximatelysolve this dual, and show that AJB, HGB, and all other Gilmore-Lawler-like boundscan be obtained by applying this algorithm with speci�c settings for the control17



parameters.4.4.3 Eigenvalue based lower boundsThese bounds were introduced by (Finke et al., 1987), and can be applied to theKoopmans-Beckmann QAP in (10). They are based on the relationship between theobjective function value of the QAP in the trace formulation (16) and the eigen-values of its coe�cient matrices. When designed and implemented carefully, thesetechniques produce bounds of good quality in comparison with Gilmore-Lawler-likebounds or, more generally, with bounds based on linear relaxations. However, thesebounds are quite expensive in terms of computation time requirements and are,therefore, not appropriate for use within branch and bound algorithms.4.5 Exact solution methodsSince QAP is a hard problem from the theoretical (and also from the practical) pointof view and no e�cient algorithms are known for this problem. All existing exactalgorithms are in principle enumeration methods like branch and bound, cuttingplane algorithms and branch and cut algorithms.4.5.1 Branch and bound algorithmsNowadays branch and bound algorithms appear to be the most e�cient exact algo-rithms for solving the QAP.The most e�cient branch and bound algorithms for the QAP employ the Gilmore-Lawler bound (GLB). The reason is that other bounds which outperform GLB interms of bound quality are simply too expensive in terms of computation time. Morerecently some e�orts have been made to employ other Gilmore-Lawler-like bounds.The bound of HGB has been used in a branch and bound algorithm by (Hahn et al.,1998) and the results are promising.Three types of branching strategies are mostly used for the QAP: single assignmentbranching , pair assignment branching and branching based on relative positioning .The most e�cient strategy is the single assignment branching. It assigns a facility toa location in each branching step, i.e., each problem is divided into subproblems by�xing the location of one of the facilities which are not assigned yet. Several rules forthe choice of the facility-location pair to determine the subproblems of a new levelof the search tree have been proposed by di�erent authors. The appropriate ruleusually depends on the bounding technique. If the GLB is employed the branchingrule is frequently formulated in terms of the reduced costs of the last assignmentproblem solved to bound the subproblem which is currently being branched.18



As for the selection rule there seems to be no clear winner among di�erent strate-gies tested for the QAP, ranging from problem-independent depth or breadth �rstsearch to instance dependent criteria related to the maximization of lower boundsor reduced costs.More recently a number of parallel branch and bound algorithms have been devel-oped for the QAP, e.g. by (Pardalos and Crouse, 1989), (Bruengger et al., 1997),and (Clausen and Perregaard, 1997).4.5.2 Cutting plane methodsThe cutting plane methods in general can be classi�ed into traditional cutting planemethods and polyhedral cutting plane methods . Traditional cutting plane algorithmsfor the QAP have been developed by di�erent authors, e.g. (Bazaraa and Sherali,1982), (Balas and Mazzola, 1984a; Balas and Mazzola, 1984b)), and (Kaufmann andBroeckx, 1978). These algorithms make use of mixed integer linear programming(MILP) formulations for the QAP which are suitable for Benders' decomposition.Generally, the time needed for these methods to converge is too large, and hencethese methods may solve to optimality only very small QAPs. However, heuristicsderived from cutting plane approaches produce good suboptimal solutions in earlystages of the search.Also polyhedral cutting planes or branch and cut algorithms make use of MILPformulations of the QAP. Additionally, polyhedral cutting plane methods make useof a class of (nontrivial) valid or facet de�ning inequalities known to be ful�lled byall feasible solutions of the original problem. Some properties and few facet de�ninginequalities of the QAP polytope are already known, but still polyhedral cuttingplane methods for the QAP are not yet backed by a strong theory. Some e�orts todesign branch and cut algorithms for the QAP have been made by (Padberg andRijal, 1996) and (Kaibel, 1997). The numerical results are encouraging, althoughthe developed software is of preliminary nature, as claimed by the authors.4.6 HeuristicsThe QAP is a very di�cult problem from the practical point of view, instances ofdimension n > 20 being still not practical to solve because of very high computa-tion time requirements. This is probably the reason why the literature abounds inheuristics which are the only available algorithms to provide good quality solutionsfor the QAP in a reasonable computational time. The reader is referred to (Burkardet al., 1998) for numerous literature pointers to numerous heuristics applied to theQAP. 19



The numerous heuristic approaches developed for the QAP can be classi�ed in con-struction methods, limited enumeration methods, local search algorithms includingimprovement methods, tabu search and simulated annealing, genetic algorithms,greedy randomized adaptive search procedures (GRASP), and ant systems. In thecase of the QAP there is no widely accepted winner among these strategies. The con-struction methods, the limited enumeration methods, and the improvement methodsseem, however, to be outperformed by the other heuristic approaches.We refer to other chapters of this handbook for a detailed description of the generalmetaheuristic approaches mentioned above. In the following we brie
y mention themost frequently used neighborhood structures included in local search algorithmsfor the QAP.Frequently used neighborhoods for the QAP are the pair-exchange neighborhoodand the cyclic triple-exchange neighborhood. In the case of pair-exchanges theneighborhood of a given solution (permutation) consists of all permutations whichcan be obtained from the given one by applying a transposition to it. The size of thisneighborhood is O(�n2�). In the case of cyclic triple-exchanges, the neighborhood ofa solution (permutation) � consists of all permutations obtained from � by a cyclicexchange of some triple of indices. The size of this neighborhood is O(�n3�). Ingeneral cyclic triple-exchanges do not lead to better results when compared withpair-exchanges.4.7 Available computer codes for the QAP(Burkard et al., 1997) have compiled a library of QAP instances (QAPLIB) which iswidely used to test bounds, exact algorithms, and heuristics for the QAP. Many ofthese instances have not been solved to optimality yet, the most celebrated amongthem being the instances of (Nugent et al., 1969) of size larger than 25. QAPLIBcan be found athttp://www.opt.math.tu-graz.ac.at/ekarisch/qaplib.Two codes for computing lower bounds are also available from the QAPLIB webpage: a FORTRAN code due to (Burkard and Derigs, 1980) to compute the GLB forinstances of size up to 256, and another FORTRAN code to compute the eliminationbound (ELI) for symmetric QAP instances of size up to 256. Finally a FORTRANcode of the branch and bound algorithm developed by (Burkard and Derigs, 1980)can also be downloaded from the QAPLIB web page.Recently, (Espersen et al., ) have developed QAPpack which is a JAVA packagecontaining a branch and bound algorithm to solve the QAP. In QAPpack a numberof bounds based on linearization are implemented: the Gilmore-Lawler bound, thebound of (Carraresi and Malucelli, 1994), the bound of (Adams and Johnson, 1994),the bound of (Hahn and Grant, 1998), and the bound of (Karisch et al., 1999). The20



implementation is based on the dual framework provided by (Karisch et al., 1999).QAPpack can be found at http://www.imm.dtu.dk/ete/QAPpack.There are also some codes of heuristics available. The (compressed) FORTRANsource �le - 608.Z - of a heuristic due to (West, 1983), can be downloaded atftp://netlib.att.com in /netlib/toms.The source �les (compressed tar-�les) of two FORTRAN implementations of GRASPfor dense QAPs by (Resende et al., 1996) and sparse QAPs by (Pardalos et al., 1997)can be downloaded fromResende's web page at http://www.research.att.com/emgcr/src/index.html.The source �le of a FORTRAN implementation of the simulated annealing algorithmof (Burkard and Rendl, 1984) can be downloaded from the QAPLIB web page.The source �le of a C++ implementation of the simulated annealing algorithm of(Connolly, 1990), due to Taillard, can be downloaded from Taillard's web page athttp://www.idsia.ch/eeric/codes.dir/sa qap.c. Also a source �le of a PAS-CAL implementation of the robust tabu search algorithm by (Taillard, 1991) can befound at Taillard's web page.4.8 Asymptotic behaviorWhile being a very di�cult problem both from the theoretical and from the practicalpoint of view, the QAP shows an interesting asymptotic behavior, which suggeststhat under certain probabilistic conditions on the problem data, QAPs which arelarge enough are trivial to solve. Namely, it can be shown that the ratio between the\best" and \worst" values of the objective function approaches 1, as the size of theQAP approaches in�nity. Thus the relative error of every heuristic method vanishesas the size of the problem tends to in�nity, i.e., every heuristic �nds almost alwaysan almost optimal solution when applied to QAP instances which are large enough.A number of authors have investigated the asymptotic behavior of the QAP. (Burkardand Fincke, 1983; Burkard and Fincke, 1985) and (Frenk et al., 1985) have shown theconvergence of the above mentioned ratio to 1 in probability. Later (Szpankowski,1995) improved the convergence to almost surely. Summarizing we get the followingtheorem.Theorem 4.1 Consider a sequence of QAPs Pn, for n 2 IN, with n� n coe�cientmatrices A(n) = �a(n)ij � and B = �b(n)ij �. Assume that a(n)ij and b(n)ij , n 2 IN, 1 �i; j � n, are independently distributed random variables on [0;M ], where M is apositive constant. Moreover, assume that entries a(n)ij , n 2 IN, 1 � i; j � n, have acommon distribution, and entries b(n)ij , n 2 IN, 1 � i; j � n, have also a commondistribution (which does not necessarily coincide with that of a(n)ij ). Furthermore,assume that these random variables have �nite expected values, variances and third21



moments.Let �(n)opt and �(n)wor denote an optimal and a worst solution of Pn with their objectivefunction values z ��(n)opt � and z ��(n)wor�, respectively. Then the following equality holdsalmost surely limn!1 z ��(n)opt � =z ��(n)wor� = 1The asymptotic behavior of the QAP has been exploited by (Dyer et al., 1986) toanalyze the performance of branch and bound algorithms for QAPs with coe�cientsgenerated randomly as described above. Dyer et al. have shown that any branchand bound algorithm that uses single assignment branching and employs a boundobtained by solving the continuous relaxation of the linearization of Frieze and Yade-gar would branch on at least n(1�o(1))n=4 nodes with probability tending to 1 as thesize n of the problem tends to in�nity.4.9 The biquadratic assignment problemA generalization of the QAP arises if we consider objective functions of higher degreeand obtain in this way cubic, biquadratic and generally N -adic assignment problemsas introduced by (Lawler, 1963). In this way we get among other also the biquadraticassignment problem, denoted by BiQAP and stated as follows:min nXi;j=1 nXk;l=1 nXm;p=1 nXs;t=1aijklbmpstximxjpxksxlts.t. X = (xij) 2 Xn;where A = (aijkl) and B = (bmpst) are two n4 � n4 arrays.An application of the BiQAP arises in Very Large Scale Integrated (VLSI) circuitdesign. A detailed description of the mathematical modeling of the VLSI problem asa BiQAP is given by (Burkard et al., 1994). Similarly to the QAP also the BiQAP isa hard problem and cannot be solved e�ciently. Gilmore-Lawler-like lower bounds,branch and bound algorithms and some local search heuristics as well as a GRASPimplementation for the BiQAP can be found in the literature. See (Burkard andC� ela, 1997) or (C�ela, 1998) for more information and reference pointers.4.10 The Bottleneck QAPAnother problem related to the QAP is the bottleneck quadratic assignment problem(BQAP), obtained by substituting the sum by a max operation in the objectivefunction of the QAP: min�2Snmaxfaijb�(i)�(j): 1 � i; j � ng :22



The �rst occurrence of the BQAP in the literature is due to (Steinberg, 1961) andarises as an application in backboard wiring while trying to minimize the maximumlength of the involved wires. A well studied problem in graph theory which can bemodeled as a BQAP is the bandwidth problem. In the bandwidth problem we aregiven an undirected graph G = (V;E) with vertex set V and edge set E, and seek alabeling of the vertices of G by the numbers 1; 2; : : : ; n, where jV j = n, such that themaximum distance of 1-entries of the resulting adjacency matrix from the diagonalis minimized, i.e., the bandwidth of the adjacency matrix is minimized.Analogously to the QAP also the BQAP is a hard problem which cannot be solvede�ciently. Some enumeration algorithms to solve BQAP to optimality have beenproposed by (Burkard, 1974). Those algorithms employ a Gilmore-Lawler-like boundfor the BQAP.(Burkard and Fincke, 1982) investigated the asymptotic behavior of the BQAP andproved results analogous to those obtained for the QAP: Under certain probabilisticconstraints on the problem data, the relative di�erence between the worst and thebest value of the objective function approaches 0 with probability tending to 0 asthe size of the problem approaches in�nity.
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