
Abstract
A worldwide decrease of legal limits for CO2 emissions and fuel 
economy led to stronger efforts for achieving the required reductions. 
The task is to evaluate technologies for CO2 reduction and to define a 
combination of such measures to ensure the targets. The challenge 
therefor is to find the optimal combination with respect to minimal 
costs. Individual vehicles as well as the whole fleet have to be 
considered in the cost analysis - which raises the complexity. Hereby, 
the focus of this work is the consideration and improvement of a new 
model series against the background of a fleet and the selection of 
measures. The ratio between the costs and the effect of the measures 
can be different for the each vehicle configuration. Also, the 
determination of targets depends whether a fleet or an individual 
vehicle is selected and has impact on the selection and optimization 
process of those measures. Nevertheless, balancing the boundary 
conditions and additional targets like driving performance is crucial. 
The effect and the need for the integration of such interactions into 
the optimization approach is demonstrated.

Using an integrated model-based approach, the presented research 
aims to combine the complexity of a complete vehicle simulation 
focusing on CO2 emissions and the challenge of optimizing the 
emissions of a vehicle fleet including cost aspects. The optimization 
algorithm has to handle the target requirements for the fleet as well as 
for the individual vehicle in accordance with boundary conditions for 
driving performance, target conflicts and interactions between the 
selected measures.

Introduction
The global average temperature increased about 0.6°C since the 
beginning of the 20th century, caused by burning of fossil resources 
and the resulting CO2 emissions. In 1997 the Kyoto-Protocol was 
adopted to reduce the greenhouse gases from 2008 to 2012 at around 
5% compared to the value of 1990, [1]. Around 12% of the human-

caused CO2 emissions are related to passenger car traffic, [2,3]. 
Different stages exist to reduce the sourced real driving CO2 
emissions from passenger cars and traffic: [4,5] 

• Increase the market share of vehicles with alternative 
powertrains 

• Increase the amount of fuel produced from biologic sources 
• Promote vehicles with small size and weight 
• Reduce the annual travelled distances for each car owner 
• Improve the efficiency of powertrain and reduce the energy 

demand of vehicles

The last item is the most important one for the vehicle development 
process itself. CO2 emissions are evaluated with standardized test 
cycles. The influences of ambient conditions, uses and drivers are 
limited. To reduce the traffic-related emissions, for example the 
European automotive organization ACEA made their contribution by 
forming a voluntary agreement with the European parliament. In 
2009 this arrangement became mandatory with a fleet target of 130g 
CO2 per km for 2012 and a proposed target of 95g CO2 per km for 
2020, [6]. The fleet target for Europe is dependent on the average 
fleet curb weight and it is different for each manufacturer. To ensure 
compliance to the fleet target, a monetary penalty was introduced for 
the manufacturers.

The common goal for manufacturers is the achievement of an average 
fleet target. But as part of this fleet, the target has to be broken down 
into platform, model series or vehicle level. Manufacturers often have 
several model series, which have their market launches at different 
times. The implementation of new technologies and the further 
reduction of CO2 emission is not possible at every time, only if a new 
generation of a series or a facelift is launched. The question regarding 
optimal selection of measures is not focused on the overall fleet 
strategy, the question is related to the selection of the measures for 
the next vehicle generation series. Furthermore the legal targets 
differs on the market. Also therefore an analysis is needed to decide 
which technologies have to be implemented into the vehicles of the 
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various markets. A successful compromise between the global 
technology strategies, model series, vehicles and markets has to be 
found and will influence the selection and development of 
technologies (hereinafter called “measures”) to improve CO2 
emissions. Therefore the following article describes challenges and 
an optimization approach how to handle conflicts and impacts of 
individual vehicles against the background of a global fleet.

The article is divided into five chapters, starting with the need for a 
selection process of measures pertaining to legal regulations. In the 
second chapter the definition of the optimization task and an 
overview about the optimization approach is described. A rough 
overview about the simulation environment is given in the third 
section. The fourth chapter describes the challenges that arise in 
conflict with cycles, vehicles and fleet. Finally a case study for the 
application of the optimization method is shown in the last chapter.

Differences in Global CO2 Emission Regulations
In addition to the European legal regulation described above, other 
countries also introduced fleet standards to reduce CO2 emissions and 
to improve fuel economy. As summarized in Table 1, there exist 
several differences between these regulations. On the one hand the 
test driving cycles for the evaluation of the emissions are different 
and on the other hand the regulations itself. They differ in the vehicle 
reference (weight based or foot print based) and in the limits.

Table 1. Overview of legal regulations, physical units and cycles for different 
markets.

The result of this influence for the target of a vehicle is shown in 
Figure 1. The CO2 emissions of the different driving cycles of a 
fictitious vehicle were simulated by using a 1D longitudinal 
simulation model. A more detailed description of the simulation tool 
can be found in a later chapter. Due to the different speed profile and 
power demand as well as different preconditions of the four test 
cycles, different values for CO2 emissions result. The results varies 
around 5% between 162 and 169 gCO2/km. In a second step, the 
vehicle specific targets according to the legal fleet regulations for the 
year 2020 of the different markets were calculated based on the 
weight and foot-print of the vehicle. The variation of approximately 
30% between the results is much broader from 93 to 133 gCO2/km.

Based on these status and target values, the needed reduction of 
(equivalent) CO2 emissions was calculated for each market. The 
required CO2 emission reduction ranges from 22% to 44%. Hereby 
this study is based on one vehicle and its related targets. The 
influence of fleet averaging, credits for vehicles with low emissions 
and off-cycle technologies are not shown in this study. But the 
differences in the required reduction of CO2 emissions within the 
markets illustrate the need for a global fleet consideration. The issue 
of using the same vehicle in each market remains in conflict with 
individual CO2 emission targets. A market-driven selection of 
measures for each vehicle is needed.

Figure 2 shows an illustration for the reduction of CO2 emissions 
from the baseline status on the left side to a defined target on the right 
side. In between, exemplary measures and their potentials with 
respect to CO2 emissions are listed in form of a waterfall diagram. 
The term “baseline” is defined as the starting point of a development 
project - referring to the CO2 emissions of a vehicle without any 
implemented measures. As one result of this illustration, the needed 
reduction of CO2 emissions cannot be achieved by selecting only one 
or two measures. Technologies in each vehicle subsystem, such as 
complete vehicle, powertrain, auxiliaries, and engine up to 
hybridization, have to be considered. Because the legal regulations 
for the limitation of CO2 emission will become more stringent in the 
future, more measures will be needed and implemented to achieve the 
target. Additionally every measure results in additional costs for 
development, additional parts or assembly [7]. The task is to select 
the right set of combinations from a list of possible measures to reach 
the CO2 emission target with minimum costs.

Figure 1. Example of driving cycle depended CO2 emissions status and 
theoretic vehicle specific fleet regulation target of a fictitious vehicle. For a 
better comparison, all results were converted to the same physical unit of 
“gCO2/km”.
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Figure 2. Example of a water fall diagram for reduction of CO2 emissions.

Optimization Approach

State of Art
As an important topic for the automotive industry, the achievement of 
the CO2 emission fleet target is well discussed. Up to now several 
publications handle the topics of attaining legal fleet average targets 
or discuss the optimization of individual vehicles.

The influence of possible measures based on six vehicles, 
representing a fleet, was evaluated in [8]. The intention of this 
analysis was to show the possibility to attain of the 130g CO2 
emission target in the EU by improving conventional vehicles only. 
But this core statement was focused on the possibility. As it did not 
contain any cost scenarios, no statement about the optimal 
combination of the available measures was done. Also in [9] an 
analysis of the reduction of CO2 emissions based on one vehicle and 
the possibility of reaching future fleet targets was shown. Costs of 
analyzed measures were listed, but not included to find the best 
solution for a given target. In comparison, in [10] the focus was on 
balancing fuel consumption and driving performance by using 
optimization. The considered measures were limited to the 
powertrain. The influence of interactions between different cycles and 
targets was shown. The influence of costs on the selection of 
measures was mentioned, but not integrated into the optimization.

Existing publications either discuss an individual vehicle or overall 
trends for vehicle fleets, but the connection between both and the 
coupling with costs is missing. The goal of this paper is to find the 
cost optimal combination between an overall fleet strategy for CO2 
emission reduction and the improvement and development of a 
certain vehicle or vehicle series.

Scope of Work
Figure 3 shows the framework conditions of the proposed task. A 
manufacturer has several vehicle series defining his fleet. The vehicle 
series have different market launches and periods of production. It is 
assumed that a manufacturer have an overall medium and long-term 
technology strategy to reach the fleet average CO2 emissions for 
different markets, independent of a certain vehicle series. The focus 
using an optimization for a development project is set on a defined 
time period, e.g. 2019 to 2022. Therefor vehicles A and B are fixed 

within their CO2 emissions and technologies over their period of 
production. The only variable to reduce CO2 emissions during the 
considered time period for the fleet is vehicle C. Therefore the 
question is which measures have to be implemented into vehicle C to 
reach the CO2 emission fleet average target by taking into account: 

• CO2 emission fleet average status of the existing vehicles of the 
fleet 

• Overall technology strategy and available measures 
• Costs of measures 
• Balancing of CO2 emissions and driving performance for each 

vehicle 
• Different markets and different CO2 emission targets

Figure 3. Considered time period for the optimization task.

Hereby a representative example for the usage of an optimization is 
the selling of the same vehicle model in two different markets, 
Europe and China. In both markets the same test condition is used, 
but the target can be quite different. A more detailed explanation of 
this example we gave in [11]. The principle problem is illustrated in 
Figure 4. Starting from the same baseline, a set of measures has to be 
implemented to reach the two targets. Due to the lower target in the 
EU, more measures have to be implemented into the European 
vehicle version. In addition the measures have to be divided into 
so-called global measures (which have to be implemented in every 
vehicle version) and local measures (which can be installed in each 
vehicle version individually). Figure 4 shows the order of the 
measures sorted by the cost ratio. Low-cost measures will 
implemented at first. This selection of measures represent the cost 
optimum for each of both vehicles individually. The cost ratio cr for a 
measure i is defined by use of formula (1) as the relation of its cost c 
in € divided by the impact in a driving cycle ΔE in gCO2/km:

(1)

As a result of this order, two global measure (filled bar) are located 
only in the European vehicle version, which is not practical. Global 
measures have to be decided for both vehicle versions. To achieve 
this the selection must change and an optimization process has to find 
the global cost optimal selection of measures for both vehicles. As 
boundary constraint only local measures are allowed as difference 
between the European and Chinese vehicle version.
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Figure 4. Optimization problem: different targets for a Chinese and European 
vehicle.

Overall Optimization Structure
The task of the optimization method is to handle and to find the best 
and cost optimal selection of CO2 emission improving measures to 
fulfill future CO2 emission fleet targets, but also individual vehicle 
targets. To solve this problem, a multi-level optimization method was 
developed. The optimization structure is shown in Figure 5. The left 
side includes the breakdown of the optimization problem from the 
whole considered fleet at the top level, down to the miscellaneous 
measures at the lower level. The first level is the fleet, including the 
fleet description with the markets, their calculation processes of the 
fleet average target values and the sales volume. The considered 
vehicle series for the optimization task consists of a set of vehicles, 
which are described in the second level and defined by the different 
subgroups (engine, transmission, body, tire, etc.). To describe the 
specification of a vehicle in a development process, several targets 
are defined and set in the third level. The major target is the 
superordinate test cycle for the CO2 emission fleet target - for 
example the NEDC for Europe. Furthermore each vehicle is 
described by further targets as boundary constraints, for example 
maximum speed and acceleration. These targets are described with 
test cycles, including the driving speed profile, vehicle precondition 
and ambient condition. To reach a target, measures have to be defined 
in the lower level. The measures are described by their cost, variables 
for simulation, linkage to concerned vehicles and the definition as 
local or global measure. The last steps includes the linkage to the 
simulation. A test matrix as input for the simulation is defined by this 
list of vehicles, cycles and measures.

The results of the simulation loop is a list, which includes the impacts 
and costs of all measures for each vehicle and driving cycle. This list 
is the basis for the optimization. The right side of Figure 5 includes 
the optimization order and has a reverse structure. The optimization is 
executed from the single cycle optimization at the lower level to the 
fleet optimization at the top level. The first optimization level 
considers only one vehicle and one cycle to find the best solution for 
one cycle independent of boundary constraints. Boundary constraints 
of other cycles and targets, but still for one vehicle, are considered in 
the second level. The goal is to find the best solution for one vehicle 

including all targets. The overall fleet consideration is handled in the 
last step, including the fleet average target, target breakdown for each 
vehicle and handling of local and global measures.

Figure 5. Levels of the optimization approach.

As described in the scope of work, only vehicles and vehicle series are 
considered in the optimization. To consider the whole fleet and its fleet 
targets in addition, a linkage is needed. In reference of Figure 3, the 
consideration of the complete manufacturer fleet for the optimization of 
a new vehicle series is shown in Figure 6. The inputs are the CO2 
emissions of the already existing vehicles (vehicle A and B) and special 
credits for low emission vehicle or off-cycle technologies. Based on the 
calculation formulas for the average fleet targets and the sales volume, 
the CO2 emission balance of the existing fleet is calculated and the 
needed CO2 emissions targets for the new series (vehicle C) are 
derived. This values are the targets and therewith the major input for 
the target function of the optimization algorithm.

Figure 6. Basis for Fleet Target Break Down.

Simulation Environment
Most important input for the optimization is the evaluation of the 
influences of the measures in driving cycles. To avoid costs for 
testing a large matrix of measures, vehicles and cycles, a complete 
vehicle simulation model including all relevant parts is used, which is 
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described in detail in our previous work [12]. The simulation model 
is shown in Figure 7 and highlights the main elements of the model. 
It consists of the following parts: 

• Internal combustion engine including a control unit 
• Thermal cooling circuit and catalyst 
• Auxiliaries 
• Powertrain including a control unit for gear selection 
• Vehicle including driving resistance and wheel-road contact 
• Cycle profile and driver model

Figure 7. 1D longitudinal simulation model for driving performance and fuel 
economy.

The model is set up as a closed-loop simulation model for longitudinal 
dynamic and energy flow analysis. The simulation model can be used 
for the estimation of the actual status values for driving performance 
and CO2 emissions and for the analysis of measures to reduce CO2 
emissions. Every measure is described by parameters in the simulation 
model. The effect for a certain measure is evaluated by varying or 
changing these parameters. For example the influence of aerodynamic 
measures is simulated by varying the aerodynamic drag coefficient and 
weight. For Engine Start Stop, a control unit is deposed in the model, 
which can activate or deactivate the control function.

As extension to the simulation model, a script-based automated 
simulation environment is a key factor for an effective handling of a 
detailed analysis for CO2 emission improvement. The structure is 
illustrated in Figure 8. The primary input is the description of the 
simulation test matrix, shown at the top of the figure. The test matrix is 
defined by the considered vehicles, driving cycles and possible 
measures. Additionally the vehicles are described by the type of engine, 
transmission, body, tire, cooling and auxiliaries, according to the 
subsystems of the vehicle simulation model in Figure 7. Secondary 
input is the database, on the right side of the figure. This database 
includes standardized data sheets for the components of the vehicles, 
the description of the driving cycles including test conditions and post 
processing, and finally the detailed description of possible measures. 
On the left side the connection to the simulation model is shown. 
Depending on the scope of a certain project, different simulations 
models are configured. Basis models exist for standard conventional 
vehicles and mild hybrid vehicles. Depending on available data it is 
possible to exchange a submodels for a more detailed modeling. The 
main script, in the middle of the figure, includes a cascade of three 
iteration loops, each for every defined vehicle, cycle and measure. In 
each iteration step the model is calibrated with the parameters 

depending on the selected vehicle and driving cycle. After executing 
the simulation, the simulation results are extracted for post-processing. 
The post-processing includes the calculation of specific values, like 
CO2 emissions, and an energy flow analysis. The results are saved and 
transferred to the optimization algorithm.

Figure 8. Layout of an automated simulation environment.

In [12] we analyzed the influence of the tolerance of parameters in the 
simulation. The main problem with respect to CO2 emissions is the 
optimized selection of measures and based on this the estimation of the 
final expected testing result. If the simulation results are worse than the 
test results, too many measures could be selected, resulting in costs not 
required to fulfill the target. Vice versa, a simulation result better than 
the test results could lead to not achieving the targets. This can lead to 
penalty costs up to prohibition of selling vehicles. For example if an 
error of 3 gCO2/km occurs in a European vehicle, a penalty of 285€ 
results per vehicle. Due to this, the need for exact and validated 
simulation results exists. Regarding the selection of measures some 
additional challenges for the analysis of the results have to be handled 
that will be explained in the next chapter.

Challenges for the Optimization Algorithm
In addition to the simulation environment and the availability of 
validated and plausible statements on the influence of measures, the 
right selection of such sets of measures is challenging. For the final 
decision we need to respect: 

• Cost of each measures 
• Influence of each measure depending on vehicle and driving 

cycle 
• Interactions and correlations between measures 
• Boundary constraints for balancing different targets 
• Integration of measures into different vehicles 
• Influence due to fleet average CO2 emission target setting

A detailed description of these challenges will be explained in the 
following subchapters.
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Ratio Cost Versus Influence of Measures
The first challenge and the reason for an individual consideration of 
every vehicle variant is the variation of the influence and cost ratio 
for measures. For example the influence of an engine start stop 
system ranges from 1 to 4% in the NEDC cycle, [13] [14]. No general 
statement can be applied for vehicles and a fleet. The influence 
depends on engine and transmission technology and is individual for 
each vehicle. In order to get an accurate statement of CO2 emissions, 
the vehicle specific influence has to be considered.

Another result is shown in table 2. For two example vehicles (C 
segment and D segment vehicle) and two driving cycles (NEDC, 
FTP/HWFET) three different measures were evaluated. For both 
vehicles the aerodynamic drag cwd was reduced by 0.03. The 
improvement of CO2 emission ranges from 2.1 to 2.9 g/km. The 
differences depend on the driving cycle speed profile, the frontal area 
and the engine/transmission efficiency. No global statement on the 
benefits due to aerodynamic drag reduction is possible and every 
vehicle has to be considered separately. The same result can be seen 
when varying the weight by 50 and 100 kg. The weight has an 
influence on the rolling resistance and the acceleration inertia. The 
effect on rolling resistance is direct related to the weight reduction. In 
addition an overlaying influence exists for the acceleration inertia due 
to the discrete test weight steps. In comparison, in the FTP cycle the 
test weight steps are about 57 kg and in the NEDC the steps are 110 
kg. So the influence of 50 kg weight reduction can be higher in the 
FTP compared to the NEDC. Only if the weight reduction leads to 
another test weight class, the effect on acceleration resistance is 
noticeable. In case of 50 kg weight reduction the results range from 
0.5 to 2.1 gCO2/km. Hereby no reduced test weight is available for 
the NEDC at the weight reduction of 50 kg and so the demonstrated 
influence is only caused by the reduced rolling resistance. In 
comparison a lower test weight class is realized in the FTP cycle, 
which explains the high difference. Nevertheless, effects due to 
vehicle and cycle are still existing and lead to different results. In 
addition this effect directly influences the cost ratio, described by 
equation (1). By assuming the same cost, the cost ratio and 
furthermore the cost optimal selection differs for every vehicle and 
driving cycle.

Table 2. Influence of measures regarding vehicle and driving cycle.

Interactions between Technologies
To ensure future CO2 emission targets, a set of measures has to be 
selected. The influences of all defined measures for improving CO2 
emissions are evaluated in comparison to the baseline simulation 
result as reference. Hereby only one measure is selected and analyzed 
in each simulation step to save simulation time. The separated 
analyses are cumulated in a waterfall diagram as exemplarily shown 
in Figure 2. Because certain measures can influence each other, the 
interactions between all measures have to be considered. So besides a 
validated basis simulation model itself, an important factor for an 
exact prediction of the cumulated CO2 emission reduction is the 
consideration of interactions between technologies.

The background on interactions explains the energy flow in Figure 9. 
The fuel demand is calculated backwards based on the energy 
demand of certain components. Different groups exist, which increase 
the energy demand (additive) or increase losses due to efficiency 
(multiplicities). Majorly all components and measures can be sorted 
into the illustrated groups.

For a conventional vehicle the basis for energy calculation is the 
driving cycle profile, with the vehicle defining the resistance for 
rolling forces, aerodynamic drag and acceleration. The driving 
resistance is multiplied by the efficiency of the transmission and 
powertrain. The energy demand from the transmission is added by the 
demand of mechanical and electrical auxiliaries. By considering the 
engine efficiency, the mechanic energy demand is transferred to the 
fuel demand. Also additional consumption due to coast and idle 
operation of the engine has to be considered. Finally the engine heat 
up process increases the fuel demand.

Figure 9. Energy sinks and the cumulative flow path for the resulting fuel 
demand.

For the estimation of the interactions, the correlations between the 
technologies and the energy sinks are needed. For example, when 
combining an aerodynamic technology (driving resistance) and 
improved energy demand of a mechanic water pump (auxiliaries), no 
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interaction results, because both technologies end in different additive 
energy sinks. If the same aerodynamic technology is combined with 
improved transmission efficiency then an interaction arises, because 
the link between both sinks is multiplicative. Both measures influence 
the transmission loss. Hereby the aerodynamic technology has an 
indirect influence on the transmission loss caused by the reduced 
power flow through the transmission. As a further example, a high 
correlation results if an engine start stop system reduces idle 
operation time and a lower idle speed operation reduces the specific 
idle consumption. Both measures influence the absolute idle 
consumption and have to be considered together.

For an efficient analysis of these correlations, the automated 
simulation environment (Figure 8) is coupled with a post-processed 
interpretation of the energy flow and energy loss in each sink. This 
analysis is used to select and to decide interactions between 
measures. If this energy flow evaluation is compared in-between two 
simulation results, for example the baseline simulation as reference 
and a simulation with one improving measure, it is possible to 
evaluate for each technology the influenced sinks. This analysis is 
demonstrated in Table 3. The measures are listed in the top line and 
the energy sinks are shown in the left column. Inside the table the 
correlations between energy sinks and measures are marked. For 
example an aerodynamic improvement directly decreases the 
aerodynamic resistance. But as a secondary effect a reduced power 
demand for the overcome of the driving resistance leads to a reduced 
power flow through the engine and the transmission. This reduced 
power flow leads to decreased losses in the transmission and the 
engine. Therefore, in addition to the aerodynamic resistance, the 
transmission and engine losses are also impacted.

Table 3. Analysis of energy sinks.

Technologies which influence the same energy sink have to be 
considered together in a second simulation loop to improve the 
cumulated influence and accuracy. As result Figure 10 shows the 
estimated costs on the Y axis, depending on the required CO2 
emission reduction on the X axis. With decreasing CO2 emissions, the 

needed number of measures and their cumulated costs will increase. 
Thereby the cost increase is progressively rising because the low-cost 
technologies will be implemented before cost intensive ones. The 
blue dashed line shows the cost curve, if the influence of each 
measure is evaluated only in reference to the baseline simulation and 
the combination of the individual measures is cumulated. In 
comparison, the green solid line shows the effects if interactions are 
considered by using a second simulation loop. This consideration 
leads to reduced benefit for certain combination of measures. Due to 
this error the curve increases much faster. The difference between 
both curves is the error caused by neglecting such interactions. The 
usage of a second simulation loop is needed to improve the accuracy 
of the prediction of CO2 emissions reduction.

Figure 10. Comparison of measure selection with and without consideration of 
interactions between measures.

Interactions between Cycles
During a vehicle development, other driving cycles and targets with a 
focus on the complete vehicle level also have to be considered and 
met. In case of the energy management responsibility, test cycles for 
driving performance like acceleration, passing time and maximum 
speed, but also drivability issues have to be evaluated. Measures for 
improving CO2 emissions can affect other targets, positively as well 
as negatively. Boundary constraints for other targets have to be 
considered for the selection of the right measures, focusing mainly on 
CO2 emissions.

In Figure 11 two driving cycles related to CO2 emissions are shown 
(NEDC and WLTP). In addition, three performance test cycles are 
considered (acceleration 0 to 100 kph, passing time 80 to 120 kph 
and maximum velocity). The blue dashed and dotted line shows the 
baseline - the reference vehicle without any measures. The diagram 
illustrates the relative difference to this reference in percent, outside 
the improvement and inside the deterioration. The figure shows two 
typical measures for the reduction of CO2 emissions, weight 
reduction and decreasing of the transmission ratio. The influence of 
weight reduction is shown in the black dotted line. A benefit in CO2 
emissions as well as improvement of driving performance is expected 
due to the lower weight to be accelerated. In contrast to this, the 
change of the transmission final drive ratio is shown with the gray 
dashed line. A decreasing transmission ratio has a positive effect on 
CO2 emissions due to the changed engine operation point. Conversely 
it has a negative impact on the passing time with constant gear due to 
the lower torque on wheel level.
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Figure 11. Consideration of the influence of CO2 emission improving 
measures for other driving cycles.

This example shows that measures can have positive as well as 
negative impact on other driving cycles and targets. For an overall 
view on the right selection of measures, for example if a changed 
transmission ratio is needed to ensure the CO2 emission target, the 
need of balancing the target for the passing time also exists. For 
example the worse passing time can be improved by using additional 
weight reduction. A successful compromise has to be found for an 
optimized layout on complete vehicle level. An example for the 
influence of the optimal selection of measures by considering 
different targets is illustrated in a later chapter.

Interactions between Vehicles
The global need for the reduction of CO2 emissions requires the 
improvement of a set of vehicles. With the consideration of more 
vehicles, the influence of the selection of measures, which can be 
implemented in different vehicles, is significant. The measures have to 
be divided into local and global measures with the following definition:

Global measures are platform or module set technologies which have 
to be selected for a multiple vehicles under compulsion. For example 
a decision for the same basic transmission type is needed, as shown 
in Figure 12.

Figure 12. Difference between global and local decision of measures.

Local measures are technologies which can be selected for every 
vehicle individually, like software calibration, additional parts or part 
selection out of module sets. In the example illustrated in Figure 12, 
the final drive of the transmission can be decided individually for 
each vehicle.

This consideration is overlaid by the different markets and legal 
regulation, as shown in Figure 1 as well as in Figure 4. The rationale 
is: if the same vehicle should be sold in different markets, then 
different reduction steps of CO2 emissions are needed. As a 
consequence, global measures have to be decided in all markets and 
vehicles, local measures only in the markets or vehicles where the 
required reduction is higher. This can finally effect the optimal 
selection for one vehicle.

Interactions Due to Fleet Average Value
The final challenge is the definition of the vehicle targets based on the 
fleet average target defined by the legal regulations. The major 
optimization task is still focused on the fleet average target. But as 
input for the optimization algorithm, vehicle individual targets and in 
account of this the target breakdown is needed.

The target definition for legal fleet regulations is shown in Table 1. In 
Europe, it is a fleet average target, depending on the average vehicle 
curb weight and weighted by the sales volume. In the US regulation, 
each vehicle has a target depending on its own foot print. But at a 
higher level an average target setting is considered, because the 
deviations of individual vehicles can be compensated with other 
vehicles by taking the sales volume into account.

Figure 13 shows an example of the influence of the target setting of 
two vehicles caused by the fleet average target. Using the method and 
analysis shown in Figure 10, the costs depending on the CO2 
emission target is drawn for two vehicles on the X- and Y- axes. The 
Z-axis shows the cumulated costs caused by the CO2 emission 
reduction of both vehicles. The red point in the center bottom shows 
the baseline CO2 emissions of both vehicles at zero cost without 
implementing any of measures. Reduction of CO2 emissions raises 
the costs of each vehicle and also the cumulated costs for both 
vehicles, illustrated with the mesh. The red line shows the target line 
for reaching the average fleet target according to the European 
Regulation (EU No 333/2014), only considered for these two 
vehicles. The formulas for the 2015 (2) and 2020 (3) fleet targets Tf in 
gCO2/km are given as follows

(2)

(3)

The variable M represents the average fleet mass per year in kg, 
weighted by the sales volume of each vehicle. The value M0 is a 
reference mass of 1372 kg. Two extreme points are possible: vehicle 
1 has no improvement and the fleet average target is achieved by 
improving only vehicle 2, and vice versa. A linear relation exists 
between these two points. By considering this relation and the 
cumulated cost mesh, the cost optimal solution is shown with the red 
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point in the middle. Herby the result is based on equal sales volume 
of both vehicles. In this case the solution for the optimal target setting 
is nearly the same reduction of CO2 emissions of both vehicles.

Figure 13. Example for optimal vehicle fuel consumption target setting. Sales 
volume ratio 50:50.

Table 4. Influence of sales volume ratio to optimal target setting.

A variation of the sales volume and the impact to the cost optimal 
target setting is shown in Table 4. It shows the distribution of sales 
volume for the calculation of the average fleet target in the first line 
and the resulting cost mesh in the second line. The optimal solution 
of the required reduction of CO2 emissions for each vehicle is shown 
in the last two lines. The first column shows the needed CO2 emission 
reduction for the basis vehicle and its target depending on the 
European CO2 emission target formula (2) until 2015. These 
reduction targets are based on the individual target value depending 
on the vehicle curb weight and without fleet compensation. The 
shown values are the difference between the baseline value and the 
absolute target value. In contrast to that, column 2 with example 1 

shows the target setting with fleet average consideration and a sales 
volume distribution of 50:50 percent, as shown in Figure 13. In this 
case the cost optimal solution is the reduction of both vehicles within 
the same range. If the sales volume distribution changes, as shown 
for example 2 and 3, the fleet target itself and the target setting 
changes. For example if vehicle 2 has a higher sales volume, the 
target approaches the individual target of vehicle 2 (-49 gCO2/km) 
and vehicle 1 has a lower influence. The cost optimal target setting 
differs in comparison to equal sales volumes. This table shows the 
high sensitivity to the average fleet consideration and target setting.

Optimization Algorithm

Optimization of One Cycle
The first optimization level considers only one vehicle and one 
driving cycle. The goal is to find the best selection of measures for a 
particular vehicle - cycle combination, independent of other boundary 
constraints. Each vehicle - cycle combination is handled by 
individual optimization loops. Inputs for the optimization are the 
baseline, the target values for the cycle and the simulation result 
matrix. The result matrix describes the impacts on cycles (e.g. 
difference on CO2 emissions) for each possible measure and its cost.

To define the initial solution for the optimization, at first the cost ratio 
based on formula (1) is calculated for every measure. In the second 
step the measures are sorted by the increasing cost ratio. Beginning 
from the baseline value, measures are added until the target value is 
reached. Interactions between measures are taken into account within 
this process. In parallel the costs of the selected measures are 
cumulated. This cost value is the reference for the optimization and 
should be minimized.

Because this initial solution is not necessarily optimal, a pair-
exchange approach with a tabu list is used, which is principally 
shown in Figure 14 and based on [15]. The first line, combination (a), 
shows an initial combination and the selection of measures (described 
by numbering). The measures with a solid circle are selected in the 
initial solution. The other measures with a dashed circle are further 
measures which are still possible, but not selected in the initial 
solution. The arrows show the selection of measures in the current 
iteration step. The optimization is done by using a pair exchange, 
shown with combination (b) to (e) in Figure 14. By deleting used 
measures and including unused measures (exchange), the method 
tries to find combinations until a better solution with a lower total 
cost value is found. With iterative processing already selected 
measures are excluded from the solution, for example #2 in 
combination (b). Because without measure #2 the target is not 
reached anymore, an additional measure has to be selected, for 
example #1 in combination (b). If with the current selection of 
measures the target is reached again, the accumulated costs of the 
actual selected measures, excluding cost of #2 and including cost of 
#1, are evaluated and compared to the reference costs of the initial 
solution. If the costs are better, the current solution is set to the new 
initial solution. If the costs are worse, another new measure is 
selected and evaluated, for example exchange of #2 with #8 in 
combination (c). If no better solution is found by excluding measure 
#2, the next iteration step is executed, for example excluding #6 in 
combination (d). In parallel the measure #2 is saved in a tabu list. 
That means the exclusion of measure #2 is inhibited for further 
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iteration steps. To show this effect, #2 is now filled in gray. The order 
for excluding measures in each iteration step is dependent on the cost 
impact. Cost-intensive measures are varied first, low-cost measures 
later. The iteration and optimization terminates when all measures 
were excluded once.

Figure 14. Principle of pair exchange optimization.

Optimization of Vehicle and Fleet
The second optimization level handles vehicles as well as the fleet. In 
comparison to the first cycle-based optimization, more than one target 
is considered. Hereby a fleet consists of a set of vehicles and one 
vehicle consists of a set of targets. Based on this abstraction the only 
difference between considering one vehicle or multiple vehicles is the 
total number of targets. The optimization problem remains the same.

A balancing between different targets (CO2 emissions and driving 
performance) is required. To handle the vehicle as well as the fleet 
optimization, a genetic optimization method was implemented. The 
principle of a genetic method is shown in Figure 15 and based on 
[16]. The initial state is set by using the baseline values of the 
vehicles - meaning without any selection of measures. This represents 
the first parent generation. Every parent generates a defined number 
of child generations. For each child, one unused measure is selected 
and fixed in place, depending on a weighted random selection. The 
weighting is based on the impact of the measures. If a measure has an 
influence on many vehicles (global measures), it will be preferred. 
The selection process has the choice between including or excluding 
the selected measure. With this new selection of measures the statuses 
for all cycles for the children are updated, including the interaction 
analysis for the measures. Here the algorithm splits up into two paths. 
If all targets of a certain child are reached, then this child is defined as 
a final solution. If not all targets are reached, then the algorithm 
verify the reachability of the remaining target individually, by using 
the cycle-based optimization. This investigation is needed, because if 
too many measures are excluded in the iteration steps, targets can be 
not reached anymore. If that is the case, the concerned child will be 
excluded for further investigation. For the other children of the 
current generation, a Pareto front is generated. Figure 16 illustrates a 
Pareto front. The dots represent all children solutions defined by two 
parameters. The first parameter on the X axis are the actual costs CF 
based on equation (4). The absolute costs of a child are the sum of the 
costs c of the already included measures m weighted by the sales 

volume sv of each measure. The second parameter on the Y axis 
describes the result of the target function for the optimization 
described by equation (5). The target function TF calculates and 
cumulates the differences between the actual statuses s and the target 
values t in relation to the baseline value bl of all considered test 
cycles tc and vehicles v.

(4)

(5)

The purpose of the optimization is to minimize the result of this 
target function to zero. A value of zero means that all targets are 
reached for a certain child. The Pareto front is a set of children 
(solutions) defined as follows: a solution s belongs to the Pareto front 
if and only if there is no other solution s’ for which the value of the 
target function and the costs are both smaller than the respective 
values corresponding to solution s. Primarily the two extreme points 
of the Pareto front are selected, the child with the lowest cost and the 
child with the lowest result of the target function. Secondary out of 
this Pareto front a defined number of children are chosen by a 
random selection. The selected children represent the new parent 
solution for the next iteration step.

Open to allow the change of measures already decided, a mutation is 
included additionally. This mutation randomly changes single 
measures and evaluates if a better solution can be found by changing.

Figure 15. Principle of the genetic optimization.
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Figure 16. Example of a Pareto front.

In each iteration step one selected measure will become 
unchangeable. Each additional iteration will add another 
unchangeable measure, e.g. in the first iteration one measure will be 
fixed, in the second two measures etc. This means that the maximum 
number of iterations is equal to the number of measures. The 
algorithm terminates if a defined number of final solutions is found. 
Final solutions means children with a result for the target function of 
zero. Out of all solutions, the child with the lowest cost is selected as 
optimal solution.

Case Study

Influence of Cycle, Vehicle and Fleet Based Optimization
Figure 5 showed the different optimization levels: cycle, vehicle and 
fleet based. The result of a case study due the comparison between 
this three levels is shown in Table 5. The columns are divided into 
this three optimization levels and their results. The upper part of the 
table shows a set of defined measures. For a better overview only 
these measures are listed in the table, which were selected by the 
optimization algorithm. Also other measures for improving CO2 
emissions were considered, but not shown in the table. The fields 
show two states: An empty field means that the corresponding 
measure is not included in the optimal solution. In contrast an “X” 
means that this measure is included. Additional brackets mean that 
the corresponding measure is global. The measures represent typical 
technologies for improving CO2 emissions. Hereby the intention of 
this case study is to show the method. Final results will depend on the 
technologies, cost and vehicles etc. The middle part of the table 
shows the resulting cost relation between all three solutions. In the 
bottom part the test cycles, their targets and the results of the test 
cycles due to the selection of measures are shown.

The cycle based optimization in the first column only considers the 
NEDC cycle of the selected vehicle. The other three tests are not 
considered and due to this the results are market with brackets. This 
optimization result represents the best solution for the vehicle, 
focused on CO2 emissions, and is defined as reference for the vehicle 
and fleet based optimization.

The vehicle level in the second column considers further boundary 
constraints for acceleration, passing time and maximum speed. The 
advantages and disadvantages of measures with respect to other 
cycles and also the achievement of the corresponding targets have to 
be balanced by the optimization. So the combination of measures 

found to be the best in the vehicle based optimization level differs 
from the best combination found in the cycle based level. The 
selection of measures is not optimal for the NEDC itself anymore and 
so the cost for the updated selection of measures increases. As seen in 
the table, the difference is resulted by the passing time from 80 to 120 
kph. In the cycle based optimization, the passing time is a not 
considered spillover and the target of 12.0 seconds was not reached. 
If this boundary constraint and target is considered in the vehicle 
optimization level, then the selection of measures changes. In this 
case the adaption of the transmission was not selected anymore, 
because on the one hand it improves CO2 emissions but on the other 
hand it has negative impact on driving performance. In order to reach 
the target of CO2 emissions, other measures (aerodynamic and 
alternator improvement) have to be selected. The resulting selection 
is not optimal for the NEDC itself and so the cost can increase, in this 
example at around 20%.

Table 5. Influence of optimal measure selection due to boundary constraints 
and global view.
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In a further step the correlation to a fleet is considered in the third 
column. In this case the considered fleet consists of five vehicles. 
Hereby the classification of global and local measures becomes 
important. In Table 4 the global measures are marked with brackets. 
For example the global “Aerodynamic Measure #3” is not optimal for 
the overall fleet and is not selected for this particular vehicle 
anymore. In order to reach all targets, other local measures now have 
to be defined for the selected vehicle. This results in additional costs 
compared to the cycle-based optimization.

This fictitious example shows the impact of the complete vehicle 
considerations and the necessary interactions to a fleet. Of course it is 
possible to design a vehicle cost optimal for a certain cycle, but the 
need to consider other targets for driving performance and drivability 
as well as the overlaid platform and fleet strategies is important. The 
optimization method presented here is able to deal with this complex 
problem and yields valuable input for the vehicle development.

Sensitivity Analysis
A question with respect to the quality of the solution is the robustness 
of the method. A mathematical optimization method can be effective 
to find the optimal solution, but in the end the quality of the solution 
directly depends on the input data. Based on the fixed input values, 
the algorithm tries to find the global optimal solution. In the context 
of the vehicle development it is difficult to ensure the availability of 
accurate input data for the simulation, especially in early 
development stages. It will be not possible to define precise values as 
input for the mathematical optimization. Hence, simulation results 
and cost information will result in tolerances. Input value for the 
optimization changes when for example a cost value changes or 
simulation results differs from test results. Performing the 
optimization with the changed input data would result in a new 
optimal solution eventually.

To ensure a robust result for the vehicle development, an additional 
sensitivity analysis was done for the reference vehicle shown in 
Figure 17. The sensitivity analysis is overlaid on the optimization 
algorithm results. It varies the input data for the optimization and 
evaluates the changes. Figure 17 shows a waterfall diagram with a set 
of selected measures, optimized until the target value is reached. On 
the right side further measures are noted, which would further 
improve CO2 emissions, but not selected for the optimal solution. To 
check the robustness of the method and the results, a sensitivity 
analysis was done. For that, as shown with the arrows, the values for 
improvement and costs were increased or decreased. New 
optimization loops were performed and analyzed with modified 
values. The results were compared with the initial solution and 
measures changed or updated in the process. In some cases other 
optimal solutions were obtained. The dark green filled bars show 
measures which were always selected. The light green striped and 
yellow dotted bars, showing percentage data, are measures that were 
included or excluded in the optimal selection depending on the input 
data. The percentage describes how often the measures were selected. 
The gray bars represent measures never used.

Figure 17. Sensitivity analysis for an optimal solution.

The results of this example is that in 87% of the variation cases the 
optimal solution was reproducible. Six out of eight measures were 
always used. In less than 13% of the variations the last two measures 
were partly replaced by two other measures. The result of the 
sensitivity analysis can be used to evaluate the robustness due to the 
input data and to interpret as a trend analysis which combination of 
measures is the steadiest one.

Summary / Conclusions
The presented research showed a mathematical approach to handle 
future CO2 emission fleet targets for supporting a vehicle 
development process. Because of more demanding targets in the 
future, the importance of cost considerations increases. Additional 
technologies have to be developed and implemented into the vehicles 
and the fleet.

For the right selection of such measures, a systematic and holistic 
approach for cost handling and optimization will become inevitable.

To evaluate the influence of measures regarding CO2 emissions, a 
simulation model is needed. The structure of this model as well as an 
automated environment was shown. The automation of the simulation 
is needed to handle the huge simulation matrix of vehicle, cycles and 
measures. The information of cost and influence of the defined 
measures is the input for the optimization. Hereby the optimization is 
divided into different parts. The challenges and requirements for the 
optimization method were explained. Interactions between measures, 
balancing of vehicle targets and the average fleet target setting have 
to be handled. For the consideration of one cycle and one vehicle a 
pair exchange method with tabu list was used. The extended 
optimization method for the whole fleet is based on a genetic 
algorithm with mutation.

Finally the benefits of the presented optimization approach were 
demonstrated on a case study. Usually studies for improving CO2 
emissions of vehicles are based on one detailed vehicle or on rough 
statements on fleet level. The presented methodic combines both 
considerations. The need of this holistic combined consideration of 
individual vehicles with the fleet background was shown. Thereby 
different optimization results and the different selection of measures 
due to the optimization levels were shown. The optimal selection of 
measures differs if only a cycle, a vehicle or a fleet is considered. 
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This result confirmed the need of a holistic approach to handle the 
target achievement of future legal CO2 emission regulation including 
the consideration of cost. The cooperation between a detailed 
evaluation of the vehicles and the fleet consideration is needed to find 
the overall best solution.

Due to the limited access and availability of detailed input data during 
early development phases, the usage of a sensitivity analysis to 
evaluate the robustness of the solution was shown in the second 
example. Input data can change during the development time of a 
vehicle. To prevent a change in solutions during a vehicle development 
project, the robustness of the approach should be verified. As presented, 
one possible method is a sensitivity analysis to check the 
reproducibility of the solution if input data changes. In the presented 
case study a steady solution was proved with the sensitivity analysis.

The planned next steps of the work is the extension of the fictitious 
fleet with a higher number of vehicles. Hereby the further validation 
of the optimization method as well as the proof of the robustness of 
the solution is the focus.
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