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Abstract

A novel 0–1 integer programming formulation of the university timetabling problem is presented. The model

provides constraints for a great number of operational rules and requirements found in most academic institutions.

Treated as an optimization problem, the objective is to minimize a linear cost function. With this objective, it is possible

to consider the satisfaction of expressed preferences regarding teaching periods or days of the week or even classrooms

for specified courses. Moreover, with suitable definition of the cost coefficients in the objective function it is possible to

reduce the solution space and make the problem tractable. The model is solvable by existing software tools with IP

solvers, even for large departments. The case of a five-year Engineering Department with a large number of courses and

teachers is presented along with its solution as resulted from the presented IP formulation.
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1. Introduction

The construction of a timetable that satisfies all operational rules and needs in an academic institution,

while at the same time fulfills as many of the wishes and requirements of the staff and the students is an

important but extremely difficult task for the staff involved. In most institutions this task is left to ad-
ministrative staff and the current practice is to replicate the timetables of previous years with minor changes

to accommodate newly developed situations. However, in recent years, changes occur more frequently and

patching of what has been developed historically is not always the best policy. Under these circumstances,

and in light of the progress achieved both in the hardware and software technologies, the scientific com-

munity continues to work on the problem in order to develop formal and automated procedures for

constructing efficient and desirable timetables.

Formally, the university timetabling problem is defined as the process of assigning university courses to

specific time periods throughout the five working days of the week and to specific classrooms suitable for
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the number of students registered and the needs of each course. For the problem we are modeling in this
paper, courses are offered to well-defined groups of students that follow a semi-structured schedule and in

that sense the problem belongs to the category of the class/teacher timetabling problem for university

environments [10]. For every educational institution the objective is always the construction of effective and

satisfactory weekly timetables. A timetable is considered to be effective when it is feasible and may be

realised by the institution, while it is considered to be satisfactory when it carries certain quality charac-

teristics that keep its users satisfied at least to a certain degree.

The university timetabling is the third stage of our effort to solve the timetabling problem for all three

levels of education in Greece. The first step faced the problem of constructing timetables for the Greek high
schools [7,8], the second solved the problem for the Greek Lyceums and this last effort gives a thorough

model and an initial solution for the university environment. The timetabling problem is known to be an

NP-complete problem in most all of its forms [4,34], meaning that if all combinations were to be examined,

the time to solution for reasonable problems would rise dramatically.

The timetabling problem, like many others in the area of combinatorial optimization, has been ap-

proached by several well-known techniques of the operational research and the computer science fields.

Several surveys on course timetabling [11] and automated timetabling [29], as well as others on more fo-

cused aspects of the problem, have managed to record this work in a systematic way, categorizing thus the
different variations of the problem and solution approaches. Given the aforementioned work, this paper

does not attempt to cover exhaustively the state-of-the-art in this area, except from pointing out the main

contributions of our work with respect to other integer programming formulations.

The paper is organized as follows. Section 2 presents a brief historical review of the timetabling

problems concentrating mainly on the integer programming (IP) formulations that appear in the literature.

Then Section 3 gives the rationale behind our approach with IP. Section 4 describes the characteristics

typically carried by courses offered in a university. Section 5 lists the rules that timetablers have to obey in

order for their product to be acceptable (basic rules), as well as a number of proposed conventions that a
timetable is desired to hold (quality rules). The IP formulation of the problem is given in Section 6, which

comprises complete description of the constraints and the objective function of the model. Section 7 gives

an approach to defining the cost coefficients involved in the formulation of the objective function. A real

timetabling problem for the department of Electrical and Computer Engineering is finally discussed

through in Section 8 and the solution provided from the proposed model is partially presented. Section 9

summarizes the presented work and concludes with remarks from our experience with the timetabling

problem.
2. Review of similar problems and state-of-the-art

As early as the decade of sixties simulation approaches, other heuristics and graph colouring methods

appeared in the literature while they were attempting to solve some variations of the problem in an effective

way. Specifically, Welsh and Powell [35] use the graph colouring technique to solve a timetabling problem,

while Schmidt and Strohlein [30] report on simulation techniques. More than 30 years later, there is still the

need to approach the problem in a systematic way that facilitates the inclusion of real-world variants of the
problem along with automation and solution of very big problems.

Among the first approaches in mathematical programming, Lawrie in [25] and Akkoyunlu in [1] present

linear and integer programming models for some versions of the problem and thus succeed in computing

optimal solutions for a school and a university timetabling problem, respectively. More specifically, in [25]

the timetabling process starts with the generation of the so-called ‘‘layouts’’ for the different groups of

students and an integer programming formulation attempts to find a set of optimal ‘‘arrangements’’, one

for each group. Conversely, in [1] the problem is solved as an assignment problem between a set of courses
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and the time periods of a weekly timetable, with central focus on preventing conflicts throughout this
assignment.

In [9] a solution is provided for the faculty assignment problem, a problem closely related to the

timetabling problem, using linear programming models. The same problem was studied in [26] and a so-

lution was attempted, again with the help of mathematical programming. More recently, in [22] the teacher

assignment problem is formulated as a MIP problem and is solved as a special case of the fixed charge

transportation problem. In this case the proposed specialized algorithm, perform better than publicly

available packages. Using goal programming, in [3] the teacher assignment problem is combined with a

form of the timetabling problem and solved through commercial software for goal programming. In a
similar manner, in [20] a linear programming formulation is provided for the classroom allocation problem,

a sub-problem of the university timetabling.

IP formulations for the school and the university timetabling problems as optimization problems are

also given in [33], where the NP-completeness of both problems is shown even for simple versions. The

author, however, chooses graph theory approaches for the solution of the problems under consideration.

Extensions to this work, especially with regards to the so-called conflict matrix are presented in [31]. Given

the difficulties of those days to solve large IP problems, the Lagrangean relaxation is proposed as a possible

solution approach for the resulting model. However, in other real-world applications [32] a heuristic ap-
proach is proposed instead.

Along with the mathematical formulation, several authors divide requirements into two groups; the hard

ones, which are included in the constraints and they define the search space, and the soft ones, which are

included in some way in the objective function [18]. A similar strategy for a timetabling problem for

universities is solved in [2] by grouping sub-problems. A solution approach for the same problem, however

with lectures of different length is provided in [19]; in this formulation approach lectures may last one, two

or three periods.

Apart from the classical mathematical programming approaches, several new and most efficient tech-
niques for combinatorial problems have also being used for the timetabling problems. Amongst these, tabu

search was used in [12,21] for the solution of the school and university timetabling problems; constraint

logic programming are presented in [13,24]. Last but not least, genetic algorithms have been utilized as an

effective tool for the solution of timetabling problems. For example in [5,6,10,16] as well as in [27,28]

university timetabling problems are solved through these techniques.
3. Main principles in our approach

In recent years, because of the advancements in computer software and hardware, IP and MIP for-

mulations have started being again an acceptable approach for many combinatorial problems [23]. The new

technologies in information systems, the availability of reliable software and the ability to solve relatively

large problems in relatively short time are the main reasons for making this traditional modeling approach

attractive for the solution of realistic problems. Two decades back the problems that were solvable by

classical IP techniques, mainly branch-and-bound, carried tens of integer variables. Now a problem with

many thousands and in special occasions millions of binary variables is not necessarily a problem. In re-
gards with the timetabling problems, IP models have been presented in [14] for the university timetabling

problem and in [7,8] for the school timetabling problem; the solutions produced with commercial software

presented no real problem in terms of computation times.

In the sections that follow, a university timetabling problem is modeled as an optimization problem

using 0–1 variables. The model provides constraints for a large number of different rules and regulations

that exist in academic environments. More specifically, the model succeeds in creating timetables that are

free from collisions between courses, teachers and classrooms and they are complete from all aspects;
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moreover, it supports the scheduling of courses that require consecutive time periods, as well as
courses that require sessions that are repeated several times to accommodate different groups of students.

Lastly, pre-assignments can be easily introduced into the model, as well as free-of-teaching time during

the week.

The IP formulation followed in this paper is a novel one and the model carries certain unique features

compared to others. The binary variables are defined in such a way that the structural elements: courses,

students, teachers, days and periods are preserved in the model in a distinct way. This choice was made

knowing that in reality the assignment is performed between the set of triplets (course, teacher, group of

students) and the set of pairs (period, day). Of course this choice leads to a very large number of possible
variables, however with the introduction of suitable subsets of the basic sets of days, time periods, groups of

students, teachers, courses and classrooms, this number reduces to manageable sizes. On the other side, the

proposed definition of our binary variables leads to very flexible elements as far as the modeling is con-

cerned. Carrying all the important information along with the variables provided great flexibility in the

modeling process, so that almost every functional rule that the university timetabling process presented was

easily turned into mathematical equations.

Moreover, the introduction of the auxiliary variables for the consecutiveness and repetitiveness

constraints was also quite successful in managing the complexity of these issues. It is known that requests
for consecutive time slots in timetabling problems increase complexity and make the problem NP-

Hard [17]. The emphasis of the paper is on modeling the problem using IP, however, the models

that resulted from the real-world problem in our case study were still solvable by commercial packages

using the classical branch-and-bound approach. The solutions found through the presented model are

optimal in the sense that they minimize a cost function, while the objective function was chosen to be

the means of introducing preferences for certain time periods, days and classrooms for all courses in-

volved.
4. Characteristics of university timetabling

The university timetabling problem carry special features that highly depend on the characteristics that

the courses taught in a university carry along, as well as on the arrangements that each university provides

for the utilization of its resources.

4.1. Structure of university courses

A course offered by any department in the university may comprise of just lectures, or lectures and

recitations, or lectures, recitations, and/or work in a lab.

The lectures are delivered by professors, lecturers or other teaching staff and they choose to carry out the

weekly requirement in single- or multi-period sessions. Occasionally two or more professors may be as-

signed the lectures for a given course, in which case they have to decide the type of sharing for the teaching

load.

Time slots designated for recitations quite often are treated just like time for lectures, covered by the
same person that does the lectures, while in other cases they may be considered as time for exercises and

better understanding of the material covered during lectures. In this last case recitations are assigned to one

or more different persons that take responsibility for the recitations, while the class of the students is split in

several small groups.

Lab work is usually part of a given course or sometimes a course by itself and the group of students is

split into several sub-groups for training. Lab work takes place in specially equipped classrooms and is

assigned to the professor that teaches the lectures or to lab assistants.
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4.2. Types of university courses

In many universities courses are characterized as either mandatory or electives. Mandatory courses are

those that a given department considers as basic for the training of its students. During lower-grade years,

most courses are mandatory; therefore they are designed for all students of the same year. On the contrary,

electives are less in number, however in the timetable they should never overlap with any mandatory or

other elective course.

In higher-grade years, respectively, mandatory courses are less in number, while electives increase ex-
ponentially. In addition, during higher-grade years it is very common for a number of departments to

streamline their students to several divisions and each division has its own set of mandatory and elective

courses. Then, timetabling becomes even more complicated, given that some courses may overlap because

there is no common interest between divisions, while other courses are shared between divisions and their

schedule should be convenient for all interested students.

The characteristics of university courses just described, along with the fact that different students may

belong to different recitation or lab groups, pose many difficulties in controlling student schedules. As we

shall see further down quality rules placed by schedulers to make timetables easier for students have limited
usage, since each student has his/her own schedule. However, in our model some considerations for im-

proving attendance of the students during lower-grade courses are possible by giving preferential treatment

to those that are generally accepted as ‘‘difficult’’ courses.

4.3. Availability of resources

For the university timetabling problem resources refer to human resources and classrooms.

Availability of human resources for teaching is defined by the people themselves. Duties of adminis-
trative nature consume a number of periods during the week from each individual in the teaching staff. To

make things more controllable, in Greek universities the meetings for the general assembly of each de-

partment are scheduled for a fixed day and time interval, so that courses for all participants are scheduled

around those time periods. In addition, each individual in the pool of the teaching staff should provide all

other periods that may be unavailable for teaching.

Availability of classrooms is defined by the system followed by the university. Some classrooms may be

considered as available during all periods, some others however have limited availability. For example, in

Greek universities it is common for several departments to share some classrooms, so that one department
has access to a given classroom some days of the week and other departments the rest of the days. The

sharing of classrooms is particularly common for big auditoriums, a scarce commodity in most institutions.
5. Rules for timetabling in the university

Building a weekly timetable for an institution is a tedious process that administrators usually undertake

after spending several man-hours. In this effort timetablers follow several rules, some of which are so
important that they may never be violated (hard constraints) and others that are not as important and

usually are obeyed only if all hard constraints are satisfied and there is still room for better solutions under

some objectives for improved quality (soft constraints).

Hard constraints for the university timetabling are regulated by the following basic rules:

1. Collisions may not be permitted. In a timetable a collision occurs when two or more courses are scheduled

at the same period for the same teaching person, for the same group of students or for the same class-

room. Also, when two or more teaching persons are assigned to the same group of students to teach two
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different courses; and lastly when two or more classrooms are assigned to the same course and to the

same group of students.

2. A timetable has to be complete. A timetable is complete when all courses planned for every group of stu-

dents appear in the timetable, with the right amount of time periods for every course and every portion

of each course. Also, when every person of the teaching staff is assigned the total number of teaching

periods that the institution requires.

3. A timetable should accommodate requests for sessions of consecutive teaching periods. Depending on the

course and the number of teaching periods assigned per week, a professor may choose to give the course
in single-period or multi-period sessions. The timetable has to be able to schedule a given course in any

scheme that the responsible professor may choose to follow.

4. A timetable should accommodate requests for repetitive sessions of a given course or part of a course. This

rule refers to the need presented by some courses for sessions of recitations or lab work that are designed

for small groups. In this case the same session has to be repeated several times to accommodate the total

number of registered students.

Similarly, soft constraints for the university timetabling are regulated by the following quality rules:

1. Preferences for teaching in specific time intervals are obeyed if possible. Each person from the teaching

staff may express an opinion regarding the preferred period for teaching his/her courses. For example,

one may prefer to teach a given course during morning periods, while another during afternoon or eve-

ning periods.

2. Student schedules should be as compact as possible, however allow for breaks during lunch hours. Student

timetables are easier to follow if timetablers take advantage of those periods that students are more alert

and schedule the so-called ‘‘difficult’’ courses during those periods. The other courses may then fill the
rest of a given day in a way to minimize the empty slots between attendances. However, in most cases,

students prefer an empty slot around lunch time, so they can rest before they go on with their classes.

3. Minimize classroom changeovers especially for students of lower-grade years. In lower-grade years stu-

dents attend classes in big auditoriums and it is much more preferred to stay in the same place for a

few time periods before they make a change for a laboratory or for a class with smaller audience.
6. Modeling the university timetabling problem

Following similar approach as in [7,8], we use IP to build the model that may construct university

timetables. In this modeling philosophy the equations for the actual IP model may alter from institution to

institution to reflect the special requirements imposed by each one of them. However, the underlying

structure of the model remains the same and is described in the next section. Further down the equations

for modeling the timetabling problem under specific assumptions given by engineering departments in our

university is presented.

6.1. General features of the model

Six parameters are considered as the basic structural elements for this approach. These are:

• The day of the week, on which a course or part of a course may be scheduled. The set of all days possible

for scheduling is denoted with the letter I , e.g. I ¼ f1; 2; 3; 4; 5g.
• The time period of a day, on which a period of a course may be scheduled. In our approach, a time period

is any one-hour period from 8:00 a.m. till 9:00 p.m. Traditionally in Greek universities the teaching
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period is 45 minutes, thus allowing 15 minutes for a short break and change of teaching staff. The set of

all time periods in a given day available for scheduling is denoted with the letter J , e.g. J ¼ f1; 2; . . . ; 14g.
• The group of students for which a course in the timetable is designed. In our approach, examples of

groups of students may be the first year students of a given department or the fourth year students of

a given division in a given department. The set of all different groups of students that may be used

for a given timetable is denoted with the letter K, e.g. K ¼ fgroup#1; group#2; . . . ; group#jKjg.
• The professor, lecturer or other teaching staff, from now on called teacher who is going to teach a course

in the timetable. For our problem, it is assumed that the assignment of courses to teachers precedes
the timetabling process, and the teaching load of each teacher is an input to the timetablers. The set

of all teachers to be utilized in a given timetable is denoted with the letter L, e.g. L ¼ fteach#1;
teach#2; . . . ; teach#jLjg.

• The courses to be scheduled for a given set of groups of students. As explained earlier all different parts

of a given course have to appear in a weekly timetable and in a desired scheme, different for each course.

The set of all courses to be scheduled in a given timetable is denoted with the letter M , e.g.

M ¼ fcourse#1; course#2; . . . ; course#jM jg.
• The classrooms that may be available for scheduling courses for a given set of group of students. The set

of all classrooms to be utilized in a given timetable is denoted with the letter N , e.g.

N ¼ fclassroom#1; classroom#2; . . . ; classroom#jN jg.

Two different sets of binary variables are adopted. Throughout this paper, the first one is called the basic

set of variables and is denoted by xi;j;k;l;m;n, where i 2 I , j 2 J , k 2 K, l 2 L, m 2 M , and n 2 N . The variable

xi;j;k;l;m;n takes the value of 1, when course m, taught by teacher l to the group of students k, is scheduled for

the jth period of day i in classroom n. The second set of variables will be called auxiliary variables and will

be denoted by yi;pv;k;hv;m;n, where i 2 I , k 2 K, m 2 M , and n 2 N , while pv and hv are natural numbers. The
variable yi;pv;k;hv;m;n will take the value of 1, when course m, which requires a session of hv consecutive periods,
is scheduled for day i for the group of students k in classroom n. Index pv takes the values 1; 2; 3; . . . ; pmaxm
when the session has to be repeated pmaxm times. When the variable yi;pv;k;hv;m;n refers to lecture sessions,

which are given just once, then pv takes only the value of 1.
6.2. Special features of the model

The two sets of variables just described are quite detailed, therefore flexible enough and with their help
all basic rules for the timetabling problem are easily described. However, in order to keep the number of the

variables manageable several subsets of the original sets I , J , K, L, M , and N are defined. In addition, a

number of new sets are defined a priori so that certain indices use those as domains instead of the original

ones. Thus the number of variables is further reduced, while modeling of certain constraints becomes much

easier. These new sets are the following:

K1 ¼ {k 2 K: k¼ group of students of lower-grade years, usually students from the first two or three

years, following general education within a department}.
K2 ¼ {k 2 K: k¼ group of students of higher-grade years (registered to a specific division)}.

It is apparent that K1 and K2 are disjoint sets, while K ¼ K1 [ K2.

Kl ¼ {k 2 K: k¼ group of students (from either K1 or K2) for which teacher l offers some course}.

Li ¼ {l 2 L: l¼ teacher available on day i}.
Lk ¼ {l 2 L: l¼ teacher teaching at least one course for the group of students k, k 2 K}.
Lm ¼ {l 2 L: l¼ teacher teaching course m}.
Lkm ¼ Lk \ Lm and Lki ¼ Lk \ Li.
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Mk ¼ {m 2 M : m¼ course designed for the kth group of students or offered by the kth division for its stu-

dents, k 2 K}.
Ml ¼ {m 2 M : m¼ course taught by teacher l}.
Mn ¼ {m 2 M : m¼ course designed for a group of students that fits in classroom n 2 N}.

Mkl ¼ Mk \Ml, Mkn ¼ Mk \Mn, and Mkln ¼ Mk \Ml \Mn.

M com
k ¼ {ðka; l;mÞ 2 K2 � L�M : m¼ course taught by teacher l for the student group ka 2 K2, offered

additionally as elective course for the student group k 2 K2}.

Mlab ¼ {m 2 M : m¼ course requiring lab work}.

Nmk ¼ {n 2 N : n¼ classroom that fits the group of students k 2 K for the course m 2 M}.

In ¼ {i 2 I : i¼ day on which classroom n is available for use}.

Il ¼ {i 2 I : i¼ day on which teacher l 2 L is available for teaching assignments}.

Iln ¼ Il \ In.

Jiln ¼ {j 2 J : j¼ time period of day i on which teacher l 2 L and classroom n 2 N are available for as-

signments}.

JLiln ¼ {ðja; jbÞ 2 Jiln � Jiln: ðja; jbÞ¼ time interval from period ja to jb of day i on which teacher l 2 L and

classroom n 2 N are available for assignments}.

FJLiln ¼ {ja 2 Jiln: ja ¼ the starting period of an interval of day i on which teacher l 2 L and classroom

n 2 N are available for assignments}.

Pm ¼ {pv 2 f1; 2; . . . ; pmaxmg, where pmaxm is the number of repetitions required for a multi-period ses-

sion of course m 2 M}.

Hm ¼ {hv 2 Nþ: hv ¼ length (number of periods) of a multi-period session requested for course m 2 M}.

PRA¼ {ði; j; k; l;m; nÞ 2 I � J � K � L�M � N=ði; j; k; l;m; nÞ¼ an a priori assignment in the time-

table, that is, course m taught by teacher l for the group of students k is pre-assigned to period j of
day i}.

6.3. Constraints for the IP model

In this section the constraints for the IP model along with the corresponding rule that each one of them

models are presented. For presentation purposes constraints are grouped into five groups, each consisting

of a certain number of equations.

6.3.1. Uniqueness constraints

This set of constraints ensure that there are no conflicts in the timetable (basic rule #1). More specifi-

cally:

1. Every member of the teaching staff shall be assigned at most one course, one group of students and

one classroom at a time:
8i 2 I ; 8j 2 J ; 8l 2 Li;
X
k2Kl

X
m2Mkl

X
n2Nmk

xi;j;k;l;m;n 6 1: ð1Þ
2. For every group of students at most one course, one teaching person and one classroom shall be

assigned to every teaching period. This requirement further ensures that for every group of students there

will be no conflicts between mandatory courses but also between mandatory and elective courses, so that

students may choose to attend them:
8k 2 K1; 8i 2 I ; 8j 2 J ;
X
l2Lki

X
m2Mkl

X
n2Nmk

xi;j;k;l;m;n 6 1; ð2Þ
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8k 2 K2; 8i 2 I ; 8j 2 J ;
X
l2Lki

X
m2Mkl

X
n2Nmk

xi;j;k;l;m;n þ
X

ðka;l;mÞ2Mcom
k

X
n2Nmka

xi;j;ka;l;m;n 6 1: ð3Þ
Eq. (2) refers to lower-grade students, who attend courses designed for the total number of students in a

given student year. Similarly, Eq. (3) refers to higher-grade students, who may attend the courses offered by

the division of their choice and a number of additionally suggested courses offered by other divisions. This

complication for student groups in K2 is reflected by the two terms of the left hand side in the inequality.

3. Every classroom may be assigned to at most one course, one teacher and one group of students at a
time:
8n 2 N ; 8i 2 In; 8j 2 Jin;
X
k2K

X
l2Lki

X
m2Mkln

xi;j;k;l;m;n 6 1: ð4Þ
6.3.2. Completeness constraints

This set of constraints ensure that the timetable is complete (basic rule #2)
4. All courses in the curriculum of each student year should be in the timetable and in the right amount

of teaching periods:
8k 2 K1;
X
l2Lk

X
m2Mkl

X
n2Nmk

X
i2Iln

X
j2Jiln

xi;j;k;l;m;n ¼ ak; ð5Þ

8k 2 K2;
X
l2Lk

X
m2Mkl

X
n2Nmk

X
i2Iln

X
j2Jiln

xi;j;k;l;m;n þ
X

ðka;l;mÞ2Mcom
k

X
n2Nmka

X
i2Iln

X
j2Jiln

xi;j;k;l;m;n ¼ ak; ð6Þ
where ak is the total number of teaching periods planned for the kth group of students.

5. Each course should be scheduled for as many teaching periods as the curriculum of each group of

students requires
8k 2 K; 8l 2 Lk; 8m 2 Mkl;
X
n2Nmk

X
i2Iln

X
j2Jiln

xi;j;k;l;m;n ¼ bm; ð7Þ
where bm is the total number of teaching periods required for course m.
6. Each person in the teaching staff should be assigned to so many teaching periods as his/her weekly

teaching load requires
8l 2 L;
X
k2K

X
m2Mkl

X
n2Nmk

X
i2Iln

X
j2Jiln

xi;j;k;l;m;n ¼ sl; ð8Þ
where sl is the total number of teaching periods required from teacher l every week according to the de-

partmental assignments.

6.3.3. Consecutiveness constraints

This set of constraints ensures that the timetable may manage requests for multi-period sessions in some

courses (basic rule #3). Requests for multi-period sessions are quite common for university courses and

may concern either part of a course, that is the lectures, recitations, or lab work. In our model it is assumed
that the professor in charge of a course provides the desired split for the course.

In order to facilitate the modeling of this need, the auxiliary variables yi;pv ;k;hv;m;n are introduced, for each
course m for which there is request for at least one multi-period session. As mentioned previously, the

indices i, k, m, and n are defined just like for the xi;j;k;l;m;n variables, while index hv gives the number of

consecutive periods requested for the course (length of the session). For example, if course m requires

totally 5 teaching periods per week for lectures, the professor may choose to split them in one session of
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3 periods and one session of 2 periods or in two sessions of 2 periods each and one session of 1 period, or
any other possible split. In the first case index hv takes the values 2 and 3, while in the second case hv takes
the values 1 and 2.

In terms of the constraints in the IP model, consecutiveness is obtained in two steps, as follows:

7. A course m requiring a session of hv 2 Hm consecutive periods should be assigned exactly hv periods on
a given day:
8i 2 I ; 8k 2 K; 8l 2 Lki; 8m 2 Mkl; 8n 2 Nmk;X
j2JLiln

xi;j;k;l;m;n �
X
hv2Hm

X
pv2Pm

ðyi;pv ;k;hv;m;n � hvÞ ¼ 0: ð9Þ
8. If hv periods of a given day have been assigned to course m, they should also be consecutive:
8i 2 I ; 8k 2 K; 8l 2 Lki; 8m 2 Mkl; 8n 2 Nmk; 8ja 2 FJLiln; 8hv 2 Hm ^ hv > 1;

8t 2 f1; . . . ; hv � 1g; xi;ja;k;l;m;n � xi;jaþt;k;l;m;n 6 0; ð10Þ

8i 2 I ; 8k 2 K; 8l 2 Lki; 8m 2 Mkl; 8n 2 Nmk; 8j 2 Jiln; 8hv 2 Hm ^ hv > 1;

8t 2 f2; . . . ; hvg; �xi;j;k;l;m;n þ xi;jþ1;k;l;m;n � xi;jþt;k;l;m;n 6 0: ð11Þ
Eqs. (10) and (11) express the logic that if a given period of a day is assigned course m, then the following

hv � 1 periods should be assigned the same course. Eq. (10) takes care of the request for consecutiveness in

case that the first period of an available interval is assigned course m, while Eq. (11) does the same in all

other cases.

6.3.4. Repetitiveness constraints

This set of constraints is also connected with the idea of consecutiveness in the sense that they secure the

existence of the right amount of sessions of a certain type as well as the right amount of repetitions of a
given session in case of repetitive recitations or lab work.

9. The hv-period sessions should be as many as required during the week and for the non-repetitive parts

of courses there should be at most one session per day:
8k 2 K; 8m 2 Mk �Mlab; 8hv 2 Hm; 8n 2 Nmk;
X
i2Iln

X
pv2Pm

yi;pv;k;hv;m;n ¼ bm;hv ; ð12Þ
where bmhv is the total number of the hv-period sessions required for course m during a week. The constraint

expressed by Eq. (12) refers to courses that require non-repetitive sessions, that is lectures or recitations that

are delivered just once to their audience. For this reason, the next constraint additionally secures the ex-

istence of at most one of these sessions per day:
8k 2 K; 8m 2 Mk �Mlab; 8l 2 Lkm; 8hv 2 Hm; 8n 2 Nmk; 8i 2 I ;X
hv2Hm

X
pv2Pm

yi;pv ;k;hv;m;n 6 1: ð13Þ
10. In case of repetitive parts of courses, like the lab work for a given course, the scheduling of the hv-
period sessions does not require different days for different sessions, since each session is delivered to a

different sub-group of the kth group of students and the previous two constraints are replaced by Eq. (14).
8k 2 K; 8m 2 Mlab; 8hv 2 Hm;
X
n2Nmk

X
i2In

X
pv2Pm

yi;pv ;k;hv;m;n ¼ p maxm; ð14Þ
where pmaxm is the number of student sub-groups and therefore the number of repetitions required for the

hv-period session of course m.
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6.3.5. Pre-assignment constraints

This last set of constraints ensures that certain courses will be assigned at a given period in a given day

and could be used either for the exact pre-allocation of courses or for the facilitation and better handling of

computational difficulties.

11. Course m taught by teacher l to student group k should be assigned to a given period in a given day:
8ði; j; k; l;m; nÞ 2 PRA; xi;j;k;l;m;n ¼ 1; ð15Þ
where PRA is the set with all required pre-assignments.
6.4. Objective function for the IP model

The constraints just presented, when placed in an integer programming model, are capable of returning

feasible solutions, i.e. assignments that do not violate any of the basic rules. However, certain assignments

are preferable than others and the improvement of the suggested solutions is the responsibility of the

objective function, which in this model is defined to be the following:
Minimize
X
k2K

X
l2Lk

X
m2Mkl

X
n2Nmk

X
i2Il

X
j2Jiln

ci;j;k;l;m;n � xi;j;k;l;m;n

(

þ
X
k2K

X
i2I

X
m2Mk

X
n2Nmk

X
hv2Hm

X
pv2Pm

ai;pv;k;hv ;m;n � yi;pv ;k;hv;m;n

)
: ð16Þ
As can be seen in Eq. (16), the objective is to minimize a cost function consisting of two terms. The first

term of the objective function refers to the cost of assigning course m to the jth period of day i, while the

second term refers to the cost incurred from the assignment of those courses that require sessions of more

than one consecutive hours, on a given day of the week.
7. Determination of cost coefficients

In any given timetabling problem the cost coefficients in the objective function shown in Eq. (16) may

take any value. In fact, if all cost coefficients take the same value, then the problem becomes degenerate and

all feasible solutions will be optimal. In all practical situations this, of course, is not possible and a more

specific analysis for the correct assignment of the cost coefficients is needed. While rules for assigning costs

to time periods may be the subject of further research, in our model the cost coefficients are assigned values

in such a way as to reflect preferences for specific time periods of the day for all courses and for specific days

of the week for the courses with multiple time periods sessions. Preferences for certain classrooms are also

incorporated in the ci;j;k;l;m;n cost coefficients of the objective function. In order to make this more under-
standable, each case is discussed separately.

7.1. Assignment of values to ci;j;k;l;m;n coefficients according to requests from teachers, students or the

department chairman for specific time periods of the day

It is well accepted among teachers, students and the people that handle the timetabling process that

certain courses should have preferential treatment in terms of the time period that they are assigned. For

each department there is a set of courses that are considered more difficult than others and require ‘‘prime
time’’, while other courses are less demanding and can be taught at any time of the day. In order to
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Fig. 1. Penalty functions for assigning values to the ci;j;k;l;m;n cost coefficients: f2 is used for the time periods mostly preferred and f1 for
those that are less preferred.
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influence the assignment of courses to their respective preferred time periods, the ci;j;k;l;m;n coefficients are

assigned values derived from predefined functions, called penalty functions.

Examples of such penalty functions are shown in Fig. 1, even though in other cases they may take quite

different and more complicated shapes. The figure shows two linear functions with ascending slope as the

day progresses. The ci;j;k;l;m;n coefficients that correspond to any given course take values from either one of
the two functions for each time period according to the preferences of the department. This assignment may

be repeated for each day of the week. An example of such an assignment for a given day and a given course

is shown in Fig. 2. It is shown that for this particular course the time periods 9–10, 10–11, 11–12, 12–13,

13–14 are the preferred time periods, followed by the time periods 16–17, 8–9, 17–18, 18–19, 19–20, 20–21,

14–15, 15–16. This approach of defining the cost coefficients may be considered as an extension to the V-

shaped function suggested in [15] and is very beneficial to the optimization process.

The slope given to functions f1 and f2 serves a significant additional purpose: the students should end up

with a schedule that is as compact as possible meaning there exist a minimal number of empty time periods
between lectures. This quality rule is important, however it cannot always be satisfied given that there are

also elective courses, as well as lab work and recitations that are performed in groups. These activities are

performed in smaller groups and as a result individual students of the same year of study may indeed have

different daily and weekly schedules.
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Fig. 2. Example of an assignment of values to ci;j;k;l;m;n cost coefficients that correspond to a given course at a given day.
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7.2. Assignment of values to ci;j;k;l;m;n coefficients to achieve minimal classroom changeovers between courses

Another quality rule that may be partially satisfied through the assignment of suitable values to the

ci;j;k;l;m;n coefficients is that of minimal classroom changeovers between lectures. This is achieved through an

agreement under which each student group is assigned its so-called ‘‘prime classroom’’. With this as-

sumption it is possible to assign smaller values to those ci;j;k;l;m;n that relate to this classroom and for all

courses taught to this specific group of students.

7.3. Assignment of values to ai;pv;k;hv ;m;n coefficients according to requests from teachers, students or the

department in general for specific days of the week

In the objective function of the IP model the ai;pv;k;hv;m;n�s are the coefficients for the auxiliary variables,

which are used for the scheduling of those courses that require sessions of multiple time periods to specific

days. By giving values to the ai;pv;k;hv;m;n coefficients it is thus possible to influence assignments for each one of

these courses to preferred days. For example, it is possible to avoid assigning lab work on Fridays, by

assigning higher values to the ai;pv;k;hv;m;n coefficients that correspond to i ¼ 5 and to the lab sessions.
The tri-fold way of defining the cost coefficients in the objective function of the IP model just discussed is

followed in the example presented in the next section and proved to provide very satisfactory solutions for

the required timetable.
8. Case study

In order to demonstrate the capabilities of the proposed model for the solution of the university
timetabling problem, the department of Electrical and Computer Engineering at the University of Patras

was chosen. The department, which is one of the two largest departments in the Engineering School, has a

five-year programme for its students. During the first three years the students obtain a general education in

Electrical and Computer Engineering and during the last two years each student chooses one of the four

divisions of the department in order to gain a certain specialization.

For the fall semester, the department offers a total of 72 courses, summing up to 211 teaching periods for

lectures and recitations. As shown in Table 1(Panels A and B) the 72 courses are split unevenly among

the five years of study. In addition, 26 of these courses require certain training hours of the students in
Table 1

Number of courses offered for the students of the first, second, and third year (Panel A) and for the students of the fourth and fifth year

(Panel B)

Student year Total

First Second Third

Panel A

# of courses 10 (six mandatory, four electives) 8 7 25

Panel B

Division Fourth Fifth

A 4 8 12

B 6 4 10

C 6 4 10

D 7 8 15

Total 23 24 47
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laboratories, summing up to 110 periods for lab work. The department assigns these courses to 55 pro-
fessors and lecturers. There is an additional pool of assistants that take responsibility of specific tasks,

mainly supervision of the students during training in the laboratories.

The department disposes six regular classrooms (suitable for lectures and recitations) and 12 specialized

classrooms (suitable for lab work). The regular classrooms belong to the department and are available for

use at any time during the week. This is not always the case with the other departments and sharing of a

classroom with a pre-agreed availability schedule for each one of them is the current practice. Classrooms

have variable capacities and are suitable either for large or for small audiences. Respectively, most of the

lab rooms are specialized and are utilized for a single course, however computer rooms are shared between
courses of the department. Moreover, a few courses share specialized rooms (e.g. rooms with tables for

practice in design) with courses from other departments and in this case the timetabler must schedule the

involved courses only during pre-agreed time periods.

An IP model based on the formulation described in this paper was developed for the construction of the

fall semester timetable. The cost coefficients were assigned values according to the strategy discussed in

Section 5, using functions similar to the one in Fig. 2, but possibly different for different courses and days.

The mixed integer programming (MIP) solver by CPLEX 5.1 was used in an HP J7000 Workstation and the

solution found is a proposed timetable for the department. For presentation purposes, we selectively
present the timetables for the first and fourth years.

8.1. Discussion on the resulting timetables

The first year students have six mandatory and four elective courses for the fall semester. The course

names, code numbers, structure (lectures/recitations/lab work), and required split for the assigned time
Table 2

The curriculum and timetable for the fall semester of 1st year students

No Courses Code Periods

Lect. Reci. Required split

in sessions

Lab/#groups

1 Mathematics I AF1 3 2 2+ 2+ 1 –

2 Physics I AF2 3 2 3+ 2 2/3

3 Introduction to computers I AF3 2 1 3 2/3

4 Linear algebra AF4 2 1 2+ 1 –

5 Introduction to digital logic AF5 2 1 3 –

6 Engineering drawing AF6 – – – 4/2

Electives

7 Philosophy I AF7 3 – 3 –

8 History of Greek nation I AF8 3 – 2+ 1 –

9 New Greek literature I AF9 3 – 3 –

10 Foreign language I AF10 3 – 1+ 1+ 1 –
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periods, as well as the # of groups required for the lab work are all presented in Table 2. Judging the
resulting timetable for the first year, one should note the following:

(a) All courses required by the curriculum appear in the timetable with no conflicts among them. Since all

students should have the chance to choose two of the elective courses, there should be absolutely no

overlapping between courses and this is reflected in the presented solution.

(b) Each course appears in so many periods as required from the curriculum, assigning lectures and

recitations in regular classrooms (indicated as Rm#) and lab work in specialized rooms (indicated

as LR#). Also the session length follows the requirements for each course. The lab sessions are
scheduled in a repetitive manner to handle the total number of groups required by the corresponding

course.

(c) All lectures and recitations for the mandatory and elective courses are scheduled during morning ses-

sions (8:00–15:00) or afternoon sessions (17:00–20:00), following the preferences for certain time peri-

ods given as input from the timetabler.
Table 3

Curriculum for the fourth year for all divisions of the department

No Courses Code Periods

Lect. Reci. Required

split in

sessions

Lab/#group

Division of Electric Power Systems––fall semester

1 Power systems analysis I DFA1 2 1 2+ 1 3/1

2 High voltages DFA2 3 3 –

3 Power electronics I DFA3 3 3 3/1

4 Elecrical installations DFA4 3 3 –

Division of Electronics & Computers––fall semester

1 Algorithms & data structures DFB1 2 1 2+ 1 2/1

2 Advanced programming techniques DFB2 2 1 2+ 1 1/1

3 Microprocessors & microsystems I DFB3 2 1 2+ 1 3/2

4 Advanced analog/digital circuits DFB4 2 1 2+ 1 –

5 VLSI design I DFB5 2 1 2+ 1 –

6 Digital signal processing DFB6 2 1 2+ 1 –

Division of Systems Automatic Control––fall semester

1 Lab. for analogue and digital control DFC1 – – – 3/1

2 Design of dynamic systems I DFC2 3 – 2+ 1 –

3 Industrial automation I DFC3 3 - 2+ 1 –

4 Applied optimization DFC4 3 – 3 –

5 Industrial information systems DFC5 3 – 3 –

6 Applied computational methods DFC6 3 3 3 –

Division of Telecommunications & Information Technology––fall semester

1 Telecommunications systems I DFD1 2 1 2+ 1 3/1

2 Information theory DFD2 3 – 2+ 1 –

3 Telephone systems I DFD3 3 – 2+ 1 –

4 Information systems DFD4 2 1 2+ 1 –

5 Wave propagation and antenna design DFD5 2 1 2+ 1 3/1

6 Artificial intelligence DFD6 2 1 2+ 1 –

6 Physics of photovoltaic cells DFD7 2 1 2+ 1 –
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(d) On the contrary, lab work is scheduled around noontime, for various reasons that the timetabler

thought would be beneficial to the students.

(e) Due to the assignment of suitable values to cost coefficients in the objective function it is possible

to satisfy the preference given to classroom Rm0, which was named by the timetabler to be the desig-

nated room for the first year students. Thus the objective for minimal classroom changes is fully satis-

fied.

(f) The elective courses (indicated by the darker coloured boxes in the timetable) are scheduled at the be-

ginning of the day or after all mandatory lectures have come to an end so that schedules for individual
students are more compact.

Similarly, in Tables 3 and 4, one may observe the curriculum and the timetable for the students of the

fourth year. Many comments that were put forth in the previous discussion could be repeated for this

timetable too. The main difference here is the distinction between students of different divisions. In fact,

each division provides a separate timetable for its own students, with the exception of a number of courses

shared between divisions. As a result, overlapping (in time) between courses of different divisions is allowed

in general; however, certain courses are offered by one division and are recommended to students of other
divisions. In those cases there should be no overlapping with any of the courses of either division. This fact

is reflected in the timetable presented with courses like DFB3 (offered by division B and attended from

students of the divisions B and C) or DFA1 (offered by division A and attended from students of the

divisions A and C).
Table 4

Timetables for the fourth year students



Table 5

Size of problems solved and resulting models

Problem size Model size

No. of

courses

No. of lab

courses

Required

teach. per.

No. of

rooms/labs

No. of rows No. of

columns

No. of

non-zeros

Problem #1 25 8 139 3/6 7,543 4,100 35,685

Problem #2 47 19 187 4/10 12,734 13,527 78,523

Problem #3 92 27 326 6/12 17,159 19,295 92,358
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8.2. Computational results

In order to evaluate the proposed IP model, three problems of different size were solved and are exposed

in Table 5. The number of the courses varied from 25 to 92 in addition to the lab courses that varied from 8

to 27, totaling the requirements for teaching periods from 139 to 326. We should note that these teaching

periods are scheduled within the 70 available time periods during each week.

The models that resulted following the suggested IP formulation carried 7,543–17,159 equations and

4,100–19,295 binary variables, while the non-zeros of the IP model varied from 35,685 to 92,358. Com-
puting the optimal timetables required 2.5 minutes for the first problem, 18.5 minutes for the second and 95

minutes for the last one.

For large problems like problem #3, it is almost always possible to break the problem into smaller ones, at

least for our engineering school. This is because there is no real competition of the lower-grade students with

those of the higher grades for teaching rooms. Lower-grade students are large audiences and require audi-

toriums and higher-grade students are usually small audiences and request small classrooms.

Lastly, it is important to mention the role of the values chosen for the cost coefficients. According to our

experience, by changing the penalty functions it is possible to change computation time by a large factor,
meaning that the optimization process may be guided faster to the optimal solution.
9. Summary and conclusions

In this paper we presented a new IP formulation of a timetabling problem as it appears in many uni-

versities, adding however many features that may be distinct in Engineering Schools of Greek universities.

The problem is a hard one and very complex, however, the choices made through the modeling pro-
cess result to solvable and flexible models. The flexibility offered is due to the multi-dimensional vari-

ables, which allow low details of the educational system to be modeled as constraints of the IP model. A

variety of rules may be represented in the model with suitable constraints provided by this formulation.

Moreover, the choice made for the cost function allows the introduction of certain preferences regarding

time periods, days and classrooms, so that timetables can be improved according to well-accepted quality

measures.

The timetable for the Electrical and Computer Engineering Department in our university was used as a

case study and was solved very successfully. The timetable construction required scheduling of lectures,
recitations and lab courses, each type carrying different characteristics and requests. Sessions with con-

secutive time periods and/or repetitions of the same course in different sessions are among the rules that

require satisfaction and have turned into hard constraints.

Creating timetables for academic institutions is a tedious process, however automation is now pos-

sible.
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