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Surroundings

Currently known algorithms for solving equations over finite fields
include:

e brute force search

e algorithms for factoring polynomials

e Shanks’ algorithm for taking square (and higher) roots
e methods for multivariate equations based on the above

e Schoof's algorithm for taking square roots in prime fields

However, all of these are either probabilistic (barring a proof of
GRH for some) or take more than polynomial time.



Overview: a tower of algorithms

(This is part of my PhD project with H. W. Lenstra, Jr.)

I. Computing field generators in multiplicative subgroups:
for G C F*, find a € G such that F = F,(«).

II. Writing field elements as sums of like powers:

n
given b € F*, find z1,...,z, € F such that b= ) z.
i=1

III. Finding representations by diagonal forms in many variables:
given aq,...,anp € F*, and b € F*, find z1,...,xn € IF such that

n
b= > a;z}.
1=1



II.

I1I.

IV.

Overview: building blocks

. A multiplicative version of the primitive element theorem (using

elementary linear algebra)

Selective root extraction (a generalisation of the Tonelli-Shanks
algorithm)

Reducing the number of terms in a sum of like powers (a
bisection-like idea)

Dealing with coefficients other than 1 by means of the “trapez-
ium algorithm' (an algorithmic version of an idea of Dem’yanov
and Kneser)



It can be shown that...

e the set of sums of nth powers of elements, S,, in F is a subfield
of F.

o S, =F iff F can be generated over [, by an nth power in F.
o if S, #TF, we have n? > q.

o if S, =1, then every equation of the form

n
> aixl =b
1=1

for a1,...,an and b in F* is solvable.

The homogeneous variant Z?:o a;xz;’ = 0 is always solvable by the
Chevalley-Warning theorem.



By comparison...

e the results from the last slide can be much improved if g is much
larger than n2. For example, if g > n?. then every equation of
the form

ax” + by" = c
is solvable (Weil 1948).

e the algorithms I will present are not unpractical but probabilistic
algorithms will probably do better if ¢ is much larger than n.



Conventions

In this talk, the phrase “we can compute X' means:

“‘we know explicitly a deterministic polynomial time
algorithm to compute X”.

The same goes for “we can decide Y.

We will denote by [F a finite field of g elements and characteristic
p, given by a polynomial f that is irreducible over the prime field
Fp.

Our algorithms take [F as input; thus the input size is about logg,
and our algorithms must finish in time polynomial in 10ggq.



Algorithim I: a generator in a given
subgroup (1)

Theorem. Let G C F* be a multiplicative subgroup; we can com-
pute B € G such that g generates [ over its prime field, or decide
that no such o exists.

Main (in fact only) example: G = F*" for some positive integer n.

Proof. Let n = [F* : G] and let « be the given generator of F.

If K =Fp(7}) and Ko = Fp(~5) are subfields of F, we can compute
v € {vy1,7v2) such that

v" denerates F,(~7,v5) over I

by means of a elementary linear algebra.



Building block I: A ‘“‘multiplicative”
primitive element theorem

Lemma. Let L/K be a cyclic extension of fields of degree d,
and let bq,...,b; be a K-basis for L. Then at least ¢(d) of the b,
generate L as a field over K.

Now suppose a € L has degree e over K and (8 has degree f. The
degree of 3 over K(«) is given by g = Icm(e, f)/e = f/gcd(e, f),
so a basis of K(«, ) is given by

('3 |i=0,...,e—1,7=0,...,9—1).
One of these elements generates K(«a, 3) over K!

Obviously, by induction we may extend this result to systems of
more than two generators.



Algorithim I: a generator in a given
subgroup (2)

Proof (ctd.) We start induction with K = F, = Fp(1™). Assume
now we have K = Fp(~}). If |[K| < n, we find vy € F* with 73 € K.

If no such ~» exists, the algorithm fails (and rightly so)!
If |K| > n, then at least one of (a + ¢;)", where cg,...,cn are
distinct elements of K, is not in K; now put v» = o+ ¢;. (Recall

that F = Fp(a).)

Now in either case, adjoin 45 to K and compute v with K = F,(«¥"),
using Building block 1. =



Building block II: selective root extraction

Theorem. If ag,a1,...,an are in F*, then we can compute some
B € F* such that, for some 4,5 with 0 <i < 5 <n, we have

ai/aj — 6”
Proof. Let H = (ag,...,an). T he a; cover the cosets of H modulo

H", so there exist 7 and j such that a;/a; € H™.

We can factor n into primes ¢ and use this to compute generators
vp for the /-parts of H. Now, we compute an nth root g of ai/aj

using these generators vy, by means of the Tonelli-Shanks algo-

rithm. =



Algorithm II: sums of like powers

Theorem. LetbbeinF* and n a positive integer. We can decide if

n
bisin S, and if so, we can compute x1,...,xn such that b = Z ;.
i=1

Proof. If n? > q, we have enough time to enumerate all possibili-
ties.

If n? < q, then S, = IF, so the answer is yes. We use Algorithm I
to compute v € F such that ™ generates I over [Fp; this gives us

[F:Fp]—1

b= > by™
i=0
This is a sum of nth powers with at most (p — 1) - [ : Fp] terms!

Now use Building blocks II and III to come down to just n terms.



Building block III: reducing sums of like

POWErS
Theorem. Given y1,...,yy and b € F* with Y y!* = b, we can
compute z7,...,zn € F* such that I, zl' =

Proof. Divide y1,...,yy into n+41 roughly equal groups Gy, ..., Gn.
Let S; denote the sum of all terms in the first : 4+~ 1 groups.

If one of the S, is zero, we discard all terms in the first + 4+ 1
groups. Otherwise, we use selective root extraction to compute
6 € F* with

Si/S; = p".

(assume i > j). This means we can discard the groups G;41 up
to G, provided we multiply all terms in the first : + 1 groups by
B. This trick is applicable as long as we have at least n+1 terms.



Algorithm III: representations by diagonal
forms

Theorem. Let b be in F* and n a positive integer. For any
ai,...,an € F* we can decide if the equation

mn
b= > az}
i=1
is solvable, and if so, we can compute a solution.

Proof. Again, if n2 > q, we can just enumerate all possibilities.

If n2 < ¢, thereis a solution. Write ag = —b. We use now Algorithm
II to write the elements b/a; (for ¢ = 1,...,n) as sums of nth
powers, so we get

—aiZy% = —-b=uaqg-1".
J



Building block IV: the trapezium
algorithm (1)

We now have a system of the form

,
—ag(yB1 + -+ 98 ) =0
~a1 (Wi v ,) = aort

\ —an(yp 1+ ..+ y;rfjhn) = agTpot .-t an_1%Ty -1

Recall that we wrote ag = —b. If h; = 0 for some ¢ > 1, we are
donel

We try to lower the h; by bringing the last term a;y}"; to the other
side. We get the sequence

(aoyaho : an?,O + aly?yhl . ,anZ’O + ...+ an_lxﬁyn_l + anyﬁyhn) .



Building block IV: the trapezium
algorithm (2)

T he sequence

(aOyO,hoa apzy o + aly?’hl, e y00Tp ot ot ap_1Th 1+ anyﬁ7hn) :
has n 4+ 1 elements, say cg,...,cn. If one is zero, we are done!

Otherwise, use selective root extraction to compute 3 € F* with

" =cifc;, i.e. c¢c;=B"c;

(assume i > j).

Replace now the 7th term in the sequence by 8™ times the jth
term, and we can reduce h; by onel

Thus, in at most n2 steps, we will get one of the h; down to zero.



Applications (for n = 2)

If n = 2 and the characteristic of F is odd, then every form is di-
agonal. Furthermore, in characteristic 2, zeros of quadratic forms
can be found by means of linear algebra.

Corollary. Given a quadric hypersurface over a finite field F, we
can compute a rational point on it.

Corollary. Given two regular quadratic spaces V. and W over a
finite field F (char. # 2), such that dimV > dimW 4+ 1, we can
compute an isometric embedding of W into V.

On the other hand, ifdimV =dim W, we can reduce the problem

of finding an isometry from V to W to the computation of just
one square root in F.



More applications (for n = 2)

Corollary. (Bumby) Given a prime p, we can compute integers
x1,...,x4 SUCh that p = 2 —|—y2—|-z2—|-w2.
This works also for any other Euclidean quaternion orders.

Corollary. Given a central simple algebra A of degree 2 over a
finite field ¥, we can compute an explicit isomorphism from A to
a 2 x 2-matrix algebra over F.



