
An algorithm for solving

n
∑

i=1

aix
n
i = b

over finite fields

Christiaan van de Woestijne, Universiteit Leiden

Oberwolfach workshop on Finite Fields

7 December 2004

Surroundings

Currently known algorithms for solving equations over finite fields

include:

• brute force search

• algorithms for factoring polynomials

• Shanks’ algorithm for taking square (and higher) roots

• methods for multivariate equations based on the above

• Schoof’s algorithm for taking square roots in prime fields

However, all of these are either probabilistic (barring a proof of

GRH for some) or take more than polynomial time.

Overview: a tower of algorithms

(This is part of my PhD project with H. W. Lenstra, Jr.)

I. Computing field generators in multiplicative subgroups:

for G ⊆ F∗, find α ∈ G such that F = Fp(α).

II. Writing field elements as sums of like powers:

given b ∈ F∗, find x1, . . . , xn ∈ F such that b =
n

∑

i=1

xn
i .

III. Finding representations by diagonal forms in many variables:

given a1, . . . , an ∈ F∗, and b ∈ F∗, find x1, . . . , xn ∈ F such that

b =
n

∑

i=1

aix
n
i .

Overview: building blocks

I. A multiplicative version of the primitive element theorem (using

elementary linear algebra)

II. Selective root extraction (a generalisation of the Tonelli-Shanks

algorithm)

III. Reducing the number of terms in a sum of like powers (a

bisection-like idea)

IV. Dealing with coefficients other than 1 by means of the “trapez-

ium algorithm” (an algorithmic version of an idea of Dem′yanov

and Kneser)

It can be shown that...

• the set of sums of nth powers of elements, Sn, in F is a subfield

of F.

• Sn = F iff F can be generated over Fp by an nth power in F.

• if Sn 6= F, we have n2 > q.

• if Sn = F, then every equation of the form

n
∑

i=1

aix
n
i = b

for a1, . . . , an and b in F∗ is solvable.

The homogeneous variant
∑n

i=0 aix
n
i = 0 is always solvable by the

Chevalley-Warning theorem.

By comparison...

• the results from the last slide can be much improved if q is much

larger than n2. For example, if q > n4, then every equation of

the form

axn + byn = c

is solvable (Weil 1948).

• the algorithms I will present are not unpractical but probabilistic

algorithms will probably do better if q is much larger than n.

Conventions

In this talk, the phrase “we can compute X” means:

“we know explicitly a deterministic polynomial time

algorithm to compute X”.

The same goes for “we can decide Y ”.

We will denote by F a finite field of q elements and characteristic

p, given by a polynomial f that is irreducible over the prime field

Fp.

Our algorithms take F as input; thus the input size is about log q,

and our algorithms must finish in time polynomial in log q.

Algorithm I: a generator in a given

subgroup (1)

Theorem. Let G ⊆ F∗ be a multiplicative subgroup; we can com-

pute β ∈ G such that β generates F over its prime field, or decide

that no such α exists.

Main (in fact only) example: G = F∗n for some positive integer n.

Proof. Let n = [F∗ : G] and let α be the given generator of F.

If K1 = Fp(γn
1) and K2 = Fp(γn

2) are subfields of F, we can compute

γ ∈ 〈γ1, γ2〉 such that

γn generates Fp(γn
1 , γn

2) over Fp

by means of a elementary linear algebra.

Building block I: A “multiplicative”

primitive element theorem

Lemma. Let L/K be a cyclic extension of fields of degree d,

and let b1, . . . , bd be a K-basis for L. Then at least ϕ(d) of the bi

generate L as a field over K.

Now suppose α ∈ L has degree e over K and β has degree f . The

degree of β over K(α) is given by g = lcm(e, f)/e = f/gcd(e, f),

so a basis of K(α, β) is given by

(αiβj | i = 0, . . . , e − 1, j = 0, . . . , g − 1).

One of these elements generates K(α, β) over K!

Obviously, by induction we may extend this result to systems of

more than two generators.

Algorithm I: a generator in a given

subgroup (2)

Proof (ctd.) We start induction with K = Fp = Fp(1n). Assume

now we have K = Fp(γn
1). If |K| ≤ n, we find γ2 ∈ F

∗ with γn
2 6∈ K.

If no such γ2 exists, the algorithm fails (and rightly so)!

If |K| > n, then at least one of (α + ci)
n, where c0, . . . , cn are

distinct elements of K, is not in K; now put γ2 = α + ci. (Recall

that F = Fp(α).)

Now in either case, adjoin γn
2 to K and compute γ with K = Fp(γn),

using Building block I.

Building block II: selective root extraction

Theorem. If a0, a1, . . . , an are in F∗, then we can compute some

β ∈ F∗ such that, for some i,j with 0 ≤ i < j ≤ n, we have

ai/aj = βn.

Proof. Let H = 〈a0, . . . , an〉. The ai cover the cosets of H modulo

Hn, so there exist i and j such that ai/aj ∈ Hn.

We can factor n into primes ` and use this to compute generators

γ` for the `-parts of H. Now, we compute an nth root β of ai/aj

using these generators γ`, by means of the Tonelli-Shanks algo-

rithm.

Algorithm II: sums of like powers

Theorem. Let b be in F∗ and n a positive integer. We can decide if

b is in Sn and if so, we can compute x1, . . . , xn such that b =
n

∑

i=1

xn
i .

Proof. If n2 ≥ q, we have enough time to enumerate all possibili-

ties.

If n2 < q, then Sn = F, so the answer is yes. We use Algorithm I

to compute γ ∈ F such that γn generates F over Fp; this gives us

b =

[F:Fp]−1
∑

i=0

biγ
ni.

This is a sum of nth powers with at most (p − 1) · [F : Fp] terms!

Now use Building blocks II and III to come down to just n terms.

Building block III: reducing sums of like

powers

Theorem. Given y1, . . . , yN and b ∈ F
∗ with

∑

yn
i = b, we can

compute x1, . . . , xn ∈ F
∗ such that

∑n
i=1 xn

i = b.

Proof. Divide y1, . . . , yN into n+1 roughly equal groups G0, . . . , Gn.

Let Si denote the sum of all terms in the first i + 1 groups.

If one of the Si is zero, we discard all terms in the first i + 1

groups. Otherwise, we use selective root extraction to compute

β ∈ F∗ with

Si/Sj = βn.

(assume i > j). This means we can discard the groups Gj+1 up

to Gi, provided we multiply all terms in the first i + 1 groups by

β. This trick is applicable as long as we have at least n+1 terms.

Algorithm III: representations by diagonal

forms

Theorem. Let b be in F∗ and n a positive integer. For any

a1, . . . , an ∈ F
∗ we can decide if the equation

b =
n

∑

i=1

aix
n
i

is solvable, and if so, we can compute a solution.

Proof. Again, if n2 ≥ q, we can just enumerate all possibilities.

If n2 < q, there is a solution. Write a0 = −b. We use now Algorithm

II to write the elements b/ai (for i = 1, . . . , n) as sums of nth

powers, so we get

−ai

∑

j

yn
ij = −b = a0 · 1n.

Building block IV: the trapezium

algorithm (1)

We now have a system of the form






























−a0(y
n
0,1 + . . . + yn

0,h0
) = 0

−a1(y
n
1,1 + . . . + yn

1,h1
) = a0xn

1,0
... ...

−an(y
n
n,1 + . . . + yn

n,hn
) = a0xn

n,0 + . . . + an−1xn
n,n−1

Recall that we wrote a0 = −b. If hi = 0 for some i ≥ 1, we are

done!

We try to lower the hi by bringing the last term aiy
n
i,hi

to the other

side. We get the sequence
(

a0yn
0,h0

, a0xn
1,0 + a1yn

1,h1
, . . . , a0xn

n,0 + . . . + an−1xn
n,n−1 + anyn

n,hn

)

.

Building block IV: the trapezium

algorithm (2)

The sequence
(

a0y0,h0
, a0xn

1,0 + a1yn
1,h1

, . . . , a0xn
n,0 + . . . + an−1xn

n,n−1 + anyn
n,hn

)

.

has n + 1 elements, say c0, . . . , cn. If one is zero, we are done!

Otherwise, use selective root extraction to compute β ∈ F∗ with

βn = ci/cj, i.e. ci = βncj

(assume i > j).

Replace now the ith term in the sequence by βn times the jth

term, and we can reduce hi by one!

Thus, in at most n2 steps, we will get one of the hi down to zero.

Applications (for n = 2)

If n = 2 and the characteristic of F is odd, then every form is di-

agonal. Furthermore, in characteristic 2, zeros of quadratic forms

can be found by means of linear algebra.

Corollary. Given a quadric hypersurface over a finite field F, we

can compute a rational point on it.

Corollary. Given two regular quadratic spaces V and W over a

finite field F (char. 6= 2), such that dimV ≥ dimW + 1, we can

compute an isometric embedding of W into V .

On the other hand, if dimV = dimW , we can reduce the problem

of finding an isometry from V to W to the computation of just

one square root in F.

More applications (for n = 2)

Corollary. (Bumby) Given a prime p, we can compute integers

x1, . . . , x4 such that p = x2 + y2 + z2 + w2.

This works also for any other Euclidean quaternion orders.

Corollary. Given a central simple algebra A of degree 2 over a

finite field F, we can compute an explicit isomorphism from A to

a 2 × 2-matrix algebra over F.

