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Definition of number systems

A canonical number system is given by
e an algebraic integer «, the base, and

e a complete residue system D of Z[a] modulo «, usually taken
as {0,...,|Norm(a)| — 1}, the digit set,

with the property that every a € Z[a] has a finite expansion

E .
Z d;a’ (d; € D).
1=0

This definition represents a step in an ongoing chain of generali-
sations, and is the last one that has a recognisable “number’ as
a base.



Definition of number systems (2)
T he following generalisation is quite natural. We take:

e a2 monic nonconstant polynomial f with integral coefficients;

e a finite subset D of Z[X] that contains a complete residue
system of Z[X]/(f) modulo X.

By the isomorphism theorem, we have

(ZIX]/(f)) /(X)) = Z/(£(0)).
We write V = Z[X]/(f).

Note that we do not require O € D.



Digits

If the digit set D is exactly a complete residue system, we call it
irredundant, otherwise it is redundant.

If D is irredundant, then for each v € V, we write v modp X, or

simply v mod X, for the unique digit d such that v — d is divisible
by X.

We then define the transformation 7T': V — V by
T(w) =(v—(vmod X))/X,
and the (X, D)-expansion of v € V by

S d; X' with  d; = T'(v) mod X.
1>0



Examples

A simple example is where f = X — a for some integer a, |a| > 2.
Here V = 7, and modulo X —a, X is actually equal to a, so this is
just the a-ary system, if we take digits

{0,1,...,|a| — 1},
the classical digits. a = 2: binary; a = 10: decimal; etc.

Cr Qtographlcal example: f = X2 4+ X + 2, with zeros 7 =
_HE . Now V is a quadratic ring; the classical digits here are

{0,1,...,]f(0)] — 1} = {0, 1}.

Here, every element v € V can be written as

E .
v=>» d;X" (mod f),
i=0
with digits d; € D.



Questions

1. given f and D, can we write all elements of V in the form

14
S d; X' (mod f)

1=0
with d; in D7

2. given f, is there any digit set D with this property?

Theorem (B. Kovacs, Pethd, Brunotte, et al.)
There is an algorithm that, given f and D, decides question 1.

Theorem (A. Kovacs and L. German, CvdW, 2007)
The answer to question 2 is Yes when all roots of f have (complex)
absolute value bigger than 2.



More questions

Why do we want to consider digit sets without zero?

1. for a cryptographic reason: side channel attacks on (hyper)elliptic
curve cryptography implementations

2. because they are there

3. specifically, because of the following construction of digit sets
using the Chinese Remainder Theorem

SCA: we compute nP = (Zfzo TLZ'TZ) P.
That is, >¢_yni(7'P).

Observe when n; = 0; know something about n!



Periodic and finite expansions

We know: if f is expanding, then for allv € V, the (X, D)-expansion
is eventually periodic.

When is Y d;X* a finite expansion?

1>0
Answer: when » d;X'= > d;X' so > d;X'=0
1>0 1=0 1=N

If O is a digit, this is simple: d; =0 fori = N,N+1,...

If O is not a digit, and f is expanding, the only way is to have a
Zero period:

¢—1 |
Y d; X' =0,
1=0

and this repeated indefinitely.



The zero period

Assume D is irredundant and f is expanding. Then we saw
d; = T"(v) mod X;

because expansions are unique, we see that the zero period is
unique and is found as the (X, D)-expansion of 0.

Let's see what this means for the transformation 17" on V. The

zero period can be represented as

0 — T(0) =[0— (0 mod X)] /X — T2%(0) — ... — 0.

If any nonzero element v has a finite expansion, then the sequence
(T™(v))n>0 Must reach 0, and return there periodically. In partic-
ular, O must be a purely periodic element under T

Conversely: if 0 is not purely periodic, then for all n > 0, T"(0)
does not have a finite expansion.



Example

Consider V. = Z, and let M be an odd integer, |M| > 2. Take
f =X — M. Consider the irredundant digit set

Dy={-M+2, —-M+4,...,-1,1, ..., M—2, M}.

I claim that this digit set makes (Z,D,,;) into a number system.

a — (a modp, M)
M
[ we have |T'(a)| < |al.

We have here T'(a) =  it's easy to prove that

whenever |a| >

O— M
But 1 and —1 are digits, and 0 —

finite zero-period.

= —1 — 0, so we have a

We will call these digits the odd digits modulo M.



The Chinese Remainder Theorem (1)

Let f1 and f> in Z[X] be coprime monic polynomials. The Chinese
Remainder Theorem tells us that

Qlx] L Q[X] y Q[X] .
(f1f2)  (f1)  (f2)
but what about Z[X]?

ZIX] » Z|X]  Z[X] — z|X] . 0 is exact.

i) () () (i)

The sequence O

Thus, 9 is an isomorphism iff 1 € (fq1, f2), iff Res(f1, fo) = +1.



The Chinese Remainder Theorem (2)

What do we want to do with the CRT7? Suppose:

e Z[X]/(f1) is @a number system with digit set Dq;
e Z[X]/(f2) is @a number system with digit set Ds.

Let ve V =2Z[X]/(f1f2); we expand

vmod f1 = Y d§1>Xi; vmod fo =Y d§2)Xi.
i>0 i>0
d; =dP (mod fy)

for
d; = d,§2) (mod f2)

Suppose that for all > O we can solve {
d; € V; then we have an

expansion v =Y d;X" modulo f;f5!
i>0



CRT problems (1)

d=d1) (mod f;)

lvable?
d=d2) (mod f5) SOVable

Problem 1: when is {

From the exact sequence, we see: iff

d'M) mod (f1, f2) = d® mod (f1, f2).
This is satisfied, e.g., if we have Res(fq, f») = £1.

But we can also select the digits in such a way that the above
system is always satisfied!

Note, by the way, that Z[X]/(f1, fo) is a finite ring, as we assume
f1 and fo to be coprime.



Example

Let f1 =X -5 and fo = X — 7, and let's try the canonical digits
on both sides.

Now suppose we have d1) =0 and d(® = 1. Can we “merge’ ?
CRT: d= %(X —5) (mod (X —5)(X —7)). That's not integral!
And indeed, we have |Res(X — 5, X —7)| = 2.

Better idea: let all digits be pairwise congruent modulo 2. As we
saw above, we can take

D; ={-3,-1,1,3,5} and D,={-5,-3,—-1,1,3,5,7}.

Trick question: why can't we take all digits even (so O could be a
digit)?



CRT problems (2)

Problem 2: if

vmod f; = Y dgl)Xi and vmod fo =Y d§2)X75
i>0 i>0
are both finite, and we can “merge”, is the merged expansion
v =Y>0d; X" again finite?

In other words, is there N with Zf;\;_ol d; X" = v?

Let D € Z[X] be such that all digits in D1 and D¢ are congruent
to D modulo (f1, f2). We saw that such a D must exist.



Phasing In

Then YY_,d; X! = DYX_4X? (mod f1,f2). Let r = Res(f1, f2).
We have:

Lemma. The sequence 0,1,1 + X,1 4+ X + X2, ... has period r
modulo (f1, f2).

Lemma. Let v € Z[X]/(f1f2). The lengths of any finite expansions
for v “on the left” and “on the right” are congruent modulo r.

Lemma. For := 1,2, let L; be the length of the zero period for
D; modulo f;. Then Li{ = L, (mod r).



T heorem

Let f1 and fo» be monic polynomials in Z[X], and let Dy and D>
be digit sets such that Z[X]/(f1) and Z[X]/(fo) become number
systems. Put r = Res(f1, f2), and assume r = 0. For i = 1,2, let
L; be the length of the zero period for D, modulo f;,. Then the
following are equivalent:

e all elements of Dy UD5 are pairwise congruent modulo (f1, f2),
the sequence sg = 0,sp = Xsy_1 + 1 has period » modulo
(f1, f2),
and gcd(Lq, Ly) = |r|;

e Z[X]/(f1f2) becomes a number system with digit set

w1 (D1 x D).



T he half-linear case

If f1 = X — a, then we have Z[X]/(f1,f2) = Z/(r), so we can
simplify the conditions. In particular, we have r = f5(a). Thus,
condition 2 becomes:

X =1 (mod p) for all primes p|r,
X =1 (mod4) if 2|r.

independently of the chosen digit sets.



Example (continued)

Still, let f1 =X —5 and fo, = X — 7, with the given digits. They
are all congruent to 1 modulo 2.

The zero periods of both are 0O — —1, of length 2.

It follows that Z[X]/((X —5)(X — 7)) becomes a number system
with the digits {1, -1, 3, -3, 5, X, X -2, - X+2, X -4, - X +4,
X—-6, -X+6, X—-8, - X+8, - X+10,2X -7, 2X -9, —2X 49,
2X — 11, —-2X + 11, 2X — 13, —2X + 13, —2X + 15, 3X — 14,
3X —16, -3X 4+ 16, —3X 4+ 18, 3X — 18, —3X + 20, 4X — 21,
4X — 23, —4X 4+ 23, —4X + 25, 5X — 28, —5X + 30}.

It also works with the digit sets {505,1,—1,3, -3} at base 5 and
{r77,1,—-1,3,—-3,5,—-5} at base 7. The corresponding zero periods
have length 10 and 4, respectively.



