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Definitions

We define a pre-number system as a triple (V, φ,D), where

• V is a finite free Z-module;

• φ is an expanding endomorphism of V ;

• D is a system of representatives of V modulo φ(V ).

A pre-number system (V, φ,D) is a number system if there exist

finite expansions

a =
ℓ

∑

i=0

φi(di) (di ∈ D)

for all a ∈ V .

We are ultimately interested in the classification of all number

systems.



Examples

• (Z, b, {0, . . . , |b| − 1}) is a pre-number system whenever |b| ≥ 2,

and a number system if and only if b ≤ −2.

• (Z[i], b, {0, . . . , |b|2−1}) is a pre-number system whenever |b| >

1, and a number system if and only if b = −a ± i, for some

a ∈ N.

• (Z,−2, {d, D}) is a number system if and only if ... (answer at

end of talk)

• (Z[X]/((X −5)(X −7)), X, {1, −1, 3, −3, 5, X, X −2, −X +2,

X−4, −X +4, X−6, −X +6, X−8, −X +8, −X +10, 2X−7,

2X − 9, −2X + 9, 2X − 11, −2X + 11, 2X − 13, −2X + 13,

−2X + 15, 3X − 14, 3X − 16, −3X + 16, −3X + 18, 3X − 18,

−3X + 20, 4X − 21, 4X − 23, −4X + 23, −4X + 25, 5X − 28,

−5X + 30}) is a number system (recall from last year?)



Example: the odd digits

Assume V = Z and φ is multiplication by some integer b. Let b be

odd, |b| ≥ 3, and let

Dodd := {−|b| + 2,−|b| + 4, . . . ,−1,1, . . . , |b| − 2, b}.

This is a valid digit set for all odd b.

For b = 3: it’s {−1,1,3}. We get 0 = 3 · 1 + (−1) · 3.

a (a)3,odd a (a)3,odd a (a)3,odd a (a)3,odd

0 13 5 111 −1 1 −6 1133
1 1 6 13 −2 11 −7 111
2 11 7 111 −3 113 −8 1131
3 3 8 31 −4 11 −9 113
4 11 9 113 −5 111 −10 1131



The dynamic mapping

Define functions

d : V → D : d(a) is the unique d ∈ D with a − d ∈ φ(V );

T : V → V : T(a) = φ−1(a − d(a)).

We call T the dynamic mapping of (V, φ,D).

Theorem (V, φ,D) is a number system if and only for all v ∈ V

there exists n ≥ 0 with Tn(v) = 0.

Recall that a pre-number system has a finite attractor A ⊆ V with

the properties

• for all a ∈ V we have Tn(a) ∈ A if n is large enough.

• T is bijective on A.

Theorem (V, φ,D) is a number system if and only if the attractor

contains 0, and consists exactly of one cycle under T .



The easy case

Theorem (Kovács-Germán-vdW) Given (V, φ), let D be a set of

shortest (nonzero) digits modulo φ, with respect to a norm ‖ · ‖ on

V that satisfies ‖φ−1‖ < 1
2. Then (V, φ,D) is a number system.

Such a norm exists when |α| > 2 for all eigenvalues α of φ.

Theorem (Curry, others?) Let n ≥ 1, let φ be an endomorphism

of Zn, and let

D = φ

([

−1

2
,
1

2

)n)

∩ Zn.

If we have |α| > 2 for all singular values of φ, then (Zn, φ,D) is a

number system.



Algebra

A finite free Z-module V with endomorphism φ is automatically a

module over the ring Z[φ] ⊆ EndZ(V ). We have

Z[φ] ∼= Z[X]/(fmin(φ)).

If dimV = dimZ[φ] = deg(fmin(φ)), then V is isomorphic, as a

Z[φ]-module, to an ideal of Z[φ].

Theorem (Jordan-Zassenhaus) If f ∈ Z[X] is squarefree, then the

number of isomorphism classes of ideals of Z[X]/(f) is finite.

It is important to consider also the classes of noninvertible ideals!



Algebra (2)

Example: let R = Z[
√

5]. The maximal order Z[1+
√

5
2 ] is isomorphic

to the non-principal ideal I2 = (2,1 +
√

5) of R! Ugly: N(I2) = 2,

but N(I2
2) = 8!!

The matrix of multiplication by
√

5 on I2 is M =

[

−1 2
2 1

]

. It follows

that this matrix is not similar over Z to the companion matrix of

X2 − 5, although it has the same characteristic polynomial.

The singular values of M also equal to ±
√

5, so by Curry’s theorem,

a valid digit set for basis M on Z2 is given by

(

M
[

−1
2, 1

2

)2
)

∩Z2 =

{(±1,0), (0,±1), (0,0)}.

It follows that {0,2,−2,1 +
√

5,−1 −
√

5} is a valid digit set for

basis
√

5 on I2. The same digits divided by 2 form a valid digit set

for
√

5 on the maximal order.



Algebra (3)

If dimZ[φ] < dimV , then things become complicated. Sometimes,

we have a direct sum decomposition:

• if φ is the identity, then Z[φ] ∼= Z, and we have V ∼= Zn as a

Z-module.

• if V is the integral quaternions Z ⊕ Zi ⊕ Zj ⊕ Zk and φ is (left)

multiplication by i, then V ∼= Z[i] ⊕ Z[i]j.

However, V may be indecomposable as a Z[φ]-module.

Theorem (Heller-Reiner-Dade) If p is a prime and f = Xpi − 1,

with i ≥ 3, then there exist infinitely many isomorphism classes of

indecomposable modules over the ring Z[X]/(f).



Tiles and translation

The tile of the pre-number system (V, φ,D) is

T =







∞
∑

i=1

φ−i(di) : di ∈ D






.

The set T covers V ⊗ R, with tiling lattice Λ, which is the Z[φ]-

submodule of V generated by D −D, the differences of the digits.

Translation of the digit set just induces a translation of T ; the

attractor A is contained in −T . This provides an easy proof of

Theorem. Given a pre-number system (V, φ,D), for each t ∈ V , let

Dt = {d + t : d ∈ D}. Then there are only finitely many t ∈ V such

that (V, φ,Dt) is a number system.

Another method shows that we can leave 0 ∈ D in place, and

obtain the same conclusion.



n-fold pre-number systems

Let (V, φ,D) be a pre-number system with attractor A. For every

positive integer n, define

Dn =







n−1
∑

i=0

φi(di) : di ∈ D






,

the set of all length-n expansions on base φ with digits in D. Then

(V, φn,Dn) is again a pre-number system, called the n-fold pre-

number system of (V, φ,D), and we have

• An, the attractor of (V, φn,Dn), is equal to A.

• (V, φn,Dn) is a number system if and only if (V, φ,D) is a num-

ber system, and gcd(n, |A|) = 1.

This theorem is very useful for the computation of attractors, since

the bounds on the size of A derived from Dn are often smaller than

those derived from D.



n-fold pre-number systems (2)

Theorem (folklore) Let ‖ · ‖ be a norm on V ⊗ R, and let

S =

{

v ∈ V : ‖v‖ ≤ max
d∈D

‖d‖ ‖φ−1‖
1 − ‖φ−1‖

}

;

then the attractor of (V, φ,D) is contained in S.

Example: let V = Z[i], with the complex norm ‖ · ‖, and let φ be

multiplication by b = −1 + i. We let D = {0,1,2,3}, and compute

Ln =
maxd∈Dn ‖d‖

‖b‖n − 1

for n = 1,2, . . .:

n 1 2 3 4 5 6 7 8

Ln 7.24 4.24 3.67 3.61 3.28 3.46 3.32 3.22

Of course, the computation of Ln takes exponential time in n.



n-fold pre-number systems (3)

Assume V = Z.

Theorem (Matula 1982) Let k ≤ d ≤ K for all d ∈ D, and let a ∈ A.

Then






















−K

b − 1
≤ a ≤ −k

b − 1
if b > 0;

−kb − K

b2 − 1
≤ a ≤ −Kb − k

b2 − 1
if b < 0.

One should compare these bounds with the generic |a| ≤ max |d|
|b|−1

.

The proof uses the twofold number system, in case b < 0, to reduce

to the case b > 0.



Infinitely many digit sets in Z

Question: can one shift just one digit to obtain other good digit

sets?

Answer: under all kinds of technical assumptions, Yes.

Theorem (A generalisation of Matula 1982 and Kovács and Pethő

1983) Let (Z, b,D) be a number system, where B = |b| ≥ 3 and

where |d| ≤ B for all d ∈ D. Fix some d ∈ D and some integer u

with |u| ≤ B − 1; if 0 6∈ D, assume |u| ≤ B − 2. Let B be the set of

digits in D that occur in the expansions of 0, u + 1, u, and u − 1.

If d 6∈ B, then we may replace d in D by d̃ = d − ubk, for any k ≥ 1,

without affecting the number system property.

Note that |B| ≤ 6 if b > 0 and |B| ≤ 8 if b < 0. For |b| = 3, the

Theorem does not work.



Examples of infinite families

We write B = |b|. For B = 3 (Matula): {0,1,2 − 3k} when b = 3,

and {0,1,2 − 9k} when b = −3. Can take d̃ = d − ubk, for d 6∈ B.

b D u B
≥ 4 {−1,0,1, . . . , b − 2} 1 {0,1,2}

−1 {−1,0, b − 2}
≤ −4 {0,1, . . . , B − 1} 1 {0,1,2}

−1 {0,1, B − 2, B − 1}
{1,2, . . . , B} 1 {1,2, B}

−1 {1, B − 2, B − 1, B}
{−B,1,2, . . . , B − 1} 1 {1,2, B − 1,−B}

≥ 5 odd odd digits 1 {−1,1,−b + 2, b}
−1 {−1, b − 2, b}

≤ −5 odd odd digits 1 {−1,1, b + 2, b}
−3 {1,−1,−3, B − 4, B − 2}



The proof

Let Ã be the attractor for base b and digit set D̃, which is D with

d replaced by d̃.

Lemma If d̃ = d − ubk, then the expansions of all a ∈ Ã on D have

length bounded by k + 2 or so.

Now we construct a finite state transducer that replaces all occur-

rences of d by d̃, and keeps the length under k + 2 or so.

Lemma If d 6∈ B, then the finite state transducer always terminates

on a word containing only d̃ and no d.



Base −2

−80

−120

160

0

100

40

−160

0

200

−40
200−100

−200

80

120

−200

In the figure, we see all

valid digit sets for b = −2

with both digits less than

200 in absolute value.

What is the structure of

this set?



Base −2

Theorem Let d, D ∈ Z, with d < D. Then (Z,−2, {d, D}) is a

number system if and only if

1. one of {d, D} is even and one is odd;

2. neither of d and D is divisible by 3, except when the even digit

is 0;

3. we have 2d ≤ D and 2D ≥ d;

4. D − d = 3i for some i ≥ 0.

Example Thus, {1,3k + 1} is valid for b = −2, for all k ≥ 0.

The only valid digit sets for b = −2 that have 0 are {0,1} and

{0,−1}.



The proof (1)

It is clearly necessary that we have one even and one odd digit.

Also, each digit d divisible by 3 induces a 1-cycle d/3, so this is

only admissible for d = 0.

Lemma When |b| = 2, the attractor A is an interval.

Lemma Let d < D be digits for b = −2. Then

A =

{⌈

2d − D

3

⌉

, . . . ,

⌊

2D − d

3

⌋}

.

In other words, Matula’s bounds are sharp for b = −2.

Lemma We have 0 ∈ A if and only if 2d ≤ D and 2D ≥ d.



The proof (2)

It remains to determine the cycle structure of A. Let D = {d0, d1},
and let δ = d0 − d1. If a starts a cycle of length ℓ, then

(1 − bℓ)a =
ℓ−1
∑

i=0

dib
i = d0

bℓ − 1

b − 1
− δ

ℓ−1
∑

i=0

εib
i,

for some ε ∈ {0,1}. With b = −2, we find

3δ divides (d0 − 3a)((−2)ℓ − 1).

Because A is an interval of length |δ|, except in some small cases

we can assume that gcd(3δ, d0 − 3a) = 1! Now we do some

number theory to obtain

Lemma There is exactly one cycle in A if and only if |δ| = 3i for

some i ≥ 0, and 3 ∤ (d0d1) if i ≥ 1.


