
Deterministic equation solving

over finite fields

Christiaan van de Woestijne, RICAM Linz

TU Graz

Zahlentheoretisches Kolloquium

25 November 2005

The surrounding landscape (1)

We consider polynomial equations in many variables over finite

fields. These may arise as reductions of Diophantine equations

modulo a prime, or studied for their own sake.

One may be interested in:

• solvability

• number of solutions

• obtaining one, several or all solutions

We will consider algorithms for finding solutions. (Using Hensel

lifting, these are easily extended to algorithms for solving equations

over local fields.)

The surrounding landscape (2)

Currently known algorithms for solving equations over finite fields

include:

• brute force search

• algorithms for factoring polynomials

• Shanks’ algorithm for taking square (and higher) roots

• Schoof’s algorithm for taking square roots in prime fields

• methods for multivariate equations based on the above

However, all of these are either probabilistic (barring a proof of

GRH for some) or take more than polynomial time.

Part I

Probabilistic methods

The Tonelli-Shanks algorithm

Best-known formulation: given a nonzero a ∈ F,

1. find a nonsquare s in F by guessing.

2. use this s to compute a square root of a, essentially computing

a discrete logarithm in the 2-Sylow subgroup of F∗.

NB 1. The only probabilistic part is in Step 1.

NB 2. The algorithm works equally well with `th roots for any prime

number ` (we have to guess a non-`th-power).

NB 3. This algorithm uses only group-theoretic properties of the group

F∗, so it works equally well in arbitrary finite cyclic groups.

Squaring in F
∗
13 and F

∗
17

13 − 1 = 22 · 3: 17 − 1 = 24:

1

−1

5 −5

3

4(= −9)

2 −2

9

−3

6 −6

1

−1

4

2

6 −6

−2

7 −7

−4

8

5 −5

−8

3 −3

The level of an element in the tree (where the root has level 0) is

equal to the number of factors 2 in its order!

Cubing in F
∗
13 and F

∗
17

13 − 1 = 22 · 3: 17 − 1 = 24:

1

−1

5 −5

3

4(= −9)

2 −2

9

−3

6 −6

3

1

−1

4

2

6 −6

−2

7 −7

−4

8

5 −5

−8

3 −3

3

Cubing an element preserves the level, but takes you to another

tree (if there are more) or another node of the tree with root 1.

Where are these non-squares?!

In a field of q elements, where q is an odd prime power, there are

(q − 1)/2 squares and as many non-squares.

• The (non-)squares are almost uniformly distributed (but not

quite)

• The smallest non-square is O (q
1
4e) (Burgess 1957)

• (Assuming GRH:) the smallest non-square is ≤ 2(log q)2

(Ankeny 1952, Bach 1990)

Similar results hold for all nth powers where n is not too large

compared to q. So: no guaranteed efficient deterministic algorithm

to find a non-square!

The distribution of the squares modulo

1063: 1069:

35

25

5

30

20

1000

10

15

2000
0

600400 800

15

5

-15

10

0
1000

-10

-5

200 6000 800400

primes 3 modulo 4 primes 1 modulo 4

Briefly, the Cantor-Zassenhaus algorithm

Let f be a squarefree polynomial with coefficients in F. We have

F[X]/(f) ∼= F[X]/(f1) × . . . × F[X]/(fr)

if f1, . . . , fr are the irreducible factors of f , all of degree 1.

For any polynomial g in F[X], coprime to f , we have

g(q−1)/2 ≡ {1,−1} (mod fi) for i = 1, . . . , r.

Now hope that the values are not the same modulo all fi; then

g(q−1)/2 − 1

is divisible by some of the fi but not by all.

Still, the Cantor-Zassenhaus algorithm

So, what we want is a polynomial g that is a square modulo some

of the fi, and a nonsquare modulo some others.

If we are unlucky, we try another g, or we redo the computation

with f replaced by f(x + c) for some c ∈ F∗.

Several other variants, but no way to construct a g or a c that is

guaranteed to work! Not even on assumption of GRH...

Only if q is a power of a small prime p does there exist an efficient

deterministic method (Berlekamp’s method)...

Multivariate polynomials

In other words: find a rational point on a hypersurface.

Idea: given f ∈ F[X1, . . . , Xn], substitute random values x1, . . . , xn−1

for X1, . . . , Xn−1, and examine if the univariate polynomial

f(x1, . . . , xn−1, Xn)

has a zero in Xn.

Again: no guarantee that the resulting univariate polynomial has a

zero! We might have to try several (or many) tuples (x1, . . . , xn−1).

Part II:

Deterministic methods

Some conventions

From now on in this talk, the phrase “we can compute X” means:

“we know explicitly a deterministic polynomial time

algorithm to compute X”.

The same goes for “we can decide Y ”.

We assume that a finite field F of q elements and characteristic p

is given by a polynomial f that is irreducible over the prime field

Fp.

Our algorithms take F as input; thus the input size is about log q,

and our algorithms must finish in time polynomial in log q.

Group theory

An important building block of my deterministic algorithms is the

following adaptation of the Tonelli-Shanks root taking algorithm.

Theorem. If a0, a1, . . . , an are in F∗, then we can compute some

β ∈ F∗ such that, for some i,j with 0 ≤ i < j ≤ n, we have

ai/aj = βn.

Proof. Let H = 〈a0, . . . , an〉. The ai cover the cosets of H modulo

Hn, so there exist i and j such that ai/aj ∈ Hn.

We can factor n into primes ` and use this to compute generators

γ` for the `-parts of H. Now, we compute an nth root β of ai/aj

using these generators γ`, by means of the Tonelli-Shanks algo-

rithm.

Main theorem

(This is part of my PhD project with H. W. Lenstra, Jr.)

My main theorem:

Given a finite field F, a positive integer n and nonzero a0, . . . , an ∈ F,

we can compute a nontrivial solution to the equation

a0xn
0 + a1xn

1 + . . . + anxn
n = 0.

Furthermore, if possible, my algorithm will return a solution with

x0 6= 0.

In other words, whenever the equation

a1xn
1 + . . . + anxn

n = b

has solutions for a given nonzero b, we can compute one.

Applications (for n = 2)

If n = 2 and the characteristic of F is odd, then every form is di-

agonal. Furthermore, in characteristic 2, zeros of quadratic forms

can be found by means of linear algebra.

Corollary. Given a quadric hypersurface over a finite field F, we

can compute a rational point on it.

Corollary. Given two regular quadratic spaces V and W over a

finite field F (char. 6= 2), such that dim V ≥ dim W + 1, we can

compute an isometric embedding of W into V .

On the other hand, if dim V = dim W , we can reduce the problem

of finding an isometry from V to W to the computation of just

one square root in F.

More applications (for n = 2)
Corollary. (Bumby) Given a prime p, we can compute integers

x, y, z, w such that p = x2 + y2 + z2 + w2.

This works also for any other quaternion orders of class number

1.

Corollary. Given a central simple algebra A of degree 2 over a

finite field F, we can compute an explicit isomorphism from A to

a 2 × 2-matrix algebra over F.

and one I found recently (using an identity of M. SkaÃlba):

Corollary. Given an elliptic curve E by a nonsingular Weierstraß

equation over a finite field F, we can compute as many rational

points on E as we want.

The main steps

I. Generating F over its prime field by an nth power:

find α ∈ F such that F = Fp(αn).

II. Writing field elements as sums of like powers:

given b ∈ F∗, find x1, . . . , xn ∈ F such that b =
n
∑

i=1

xn
i .

III. Finding the desired representation

a1xn
1 + . . . + anxn

n = b

by an algorithmic adaptation of ideas of Dem′yanov and Kneser.

It can be shown that...

• the set of sums of nth powers of elements, Sn, in F is a subfield

of F.

• Sn = F iff F can be generated over Fp by an nth power in F.

• if Sn 6= F, we have n2 > q.

• if Sn = F, then every equation of the form

n
∑

i=1

aix
n
i = b

for a1, . . . , an and b in F∗ is solvable.

The homogeneous variant
∑n

i=0 aix
n
i = 0 is always solvable by the

Chevalley-Warning theorem.

By comparison...

• the results from the last slide can be much improved if q is much

larger than n2. For example, if q > n4, then every equation of

the form

axn + byn = c

is solvable (Weil 1948).

• the algorithms I will present are not unpractical but probabilistic

algorithms will probably do better if q is much larger than n.

Overview: building blocks

I. A multiplicative version of the primitive element theorem (really

elementary linear algebra)

II. Reducing the number of terms in a sum of like powers (a

bisection-like idea)

III. Selective root extraction (a generalisation of the Tonelli-Shanks

algorithm)

IV. Dealing with coefficients other than 1 by means of the “trapez-

ium algorithm” (an algorithmic version of an idea of Dem′yanov

and Kneser)

Algorithm I: a generator in a given

subgroup (1)

Theorem. Let G ⊆ F∗ be a multiplicative subgroup; we can com-

pute β ∈ G such that β generates F over its prime field, or decide

that no such α exists.

Main (in fact only) example: G = F∗n for some positive integer n.

Proof. Let n = [F∗ : G] and let α be the given generator of F.

If K1 = Fp(γn
1) and K2 = Fp(γn

2) are subfields of F, we can compute

γ ∈ 〈γ1, γ2〉 such that

γn generates Fp(γn
1 , γn

2) over Fp

by means of elementary linear algebra.

Building block I: A “multiplicative”

primitive element theorem

Lemma. Let L/K be a cyclic extension of fields of degree d,

and let b1, . . . , bd be a K-basis for L. Then at least ϕ(d) of the bi

generate L as a field over K.

Now suppose α ∈ L has degree e over K and β has degree f . The

degree of β over K(α) is given by g = lcm(e, f)/e = f/ gcd(e, f),

so a basis of K(α, β) is given by

(αiβj | i = 0, . . . , e − 1, j = 0, . . . , g − 1).

By the Lemma, one of these elements generates K(α, β) over K!

Obviously, by induction we may extend this result to systems of

more than two generators.

Algorithm I: a generator in a given

subgroup (2)

Proof (ctd.) We start induction with K = Fp = Fp(1n). Assume

now we have K = Fp(γn
1). If |K| ≤ n, we find γ2 ∈ F∗ with γn

2 6∈ K.

If no such γ2 exists, the algorithm fails (and rightly so)!

If |K| > n, then at least one of (α + ci)
n, where c0, . . . , cn are

distinct elements of K, is not in K; now put γ2 = α + ci. (Recall

that F = Fp(α).)

Now in either case, adjoin γn
2 to K and compute γ with K = Fp(γn),

using Building block I.

Algorithm II: sums of like powers

Theorem. Let b be in F∗ and n a positive integer. We can decide if

b is in Sn and if so, we can compute x1, . . . , xn such that b =
n
∑

i=1

xn
i .

Proof. If n2 ≥ q, we have enough time to enumerate all possibili-

ties.

If n2 < q, then Sn = F, so the answer is yes. We use Algorithm I

to compute γ ∈ F such that γn generates F over Fp; this gives us

b =

[F:Fp]−1
∑

i=0

biγ
ni.

This is a sum of nth powers with at most (p − 1) · [F : Fp] terms!

Now use Building blocks II and III to come down to just n terms.

Building block II: reducing sums of like

powers

Theorem. Given y1, . . . , yN and b ∈ F∗ with
∑

yn
i = b, we can

compute x1, . . . , xn ∈ F∗ such that
∑n

i=1 xn
i = b.

Proof. Divide y1, . . . , yN into n+1 roughly equal groups G0, . . . , Gn.

Let Si denote the sum of all terms in the first i + 1 groups.

If one of the Si is zero, we discard all terms in the first i + 1

groups. Otherwise, we use selective root extraction to compute

β ∈ F∗ with

Si/Sj = βn.

(assume i > j). This means we can discard the groups Gj+1 up

to Gi, provided we multiply all terms in the first i + 1 groups by

β. This trick is applicable as long as we have at least n+1 terms.

Building block III: selective root

extraction

Theorem. If a0, a1, . . . , an are in F∗, then we can compute some

β ∈ F∗ such that, for some i,j with 0 ≤ i < j ≤ n, we have

ai/aj = βn.

Proof. Let H = 〈a0, . . . , an〉. The ai cover the cosets of H modulo

Hn, so there exist i and j such that ai/aj ∈ Hn.

We can factor n into primes ` and use this to compute generators

γ` for the `-parts of H. Now, we compute an nth root β of ai/aj

using these generators γ`, by means of the Tonelli-Shanks algo-

rithm.

Algorithm III: representations by diagonal

forms

Theorem. Let b be in F∗ and n a positive integer. For any

a1, . . . , an ∈ F∗ we can decide if the equation

b =
n
∑

i=1

aix
n
i

is solvable, and if so, we can compute a solution.

Proof. Again, if n2 ≥ q, we can just enumerate all possibilities.

If n2 < q, there is a solution. Write a0 = −b. We use now Algorithm

II to write the elements b/ai (for i = 1, . . . , n) as sums of nth

powers, so we get

−ai

∑

j

yn
ij = −b = a0 · 1n.

Building block IV: the trapezium

algorithm (1)

We now have a system of the form






























−a0(yn
0,1 + . . . + yn

0,h0
) = 0

−a1(yn
1,1 + . . . + yn

1,h1
) = a0xn

1,0
... ...

−an(yn
n,1 + . . . + yn

n,hn
) = a0xn

n,0 + . . . + an−1xn
n,n−1

Recall that we wrote a0 = −b. If hi = 1 for some i ≥ 1, we are

done!

We try to lower the hi by bringing the last term aiy
n
i,hi

to the other

side. We get the sequence
(

a0yn
0,h0

, a0xn
1,0 + a1yn

1,h1
, . . . , a0xn

n,0 + . . . + an−1xn
n,n−1 + anyn

n,hn

)

.

Building block IV: the trapezium

algorithm (2)

The sequence
(

a0y0,h0
, a0xn

1,0 + a1yn
1,h1

, . . . , a0xn
n,0 + . . . + an−1xn

n,n−1 + anyn
n,hn

)

.

has n + 1 elements, say c0, . . . , cn. If one is zero, we are done!

Otherwise, use selective root extraction to compute β ∈ F∗ with

βn = ci/cj, i.e. ci = βncj

(assume i > j).

Replace now the ith term in the sequence by βn times the jth

term, and we can reduce hi by one!

Thus, in at most n2 steps, we will get one of the hi down to zero.

The End

(The latest version of my thesis is available from my homepage:

http://www.math.leidenuniv.nl/~cvdwoest.)

