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T he Question

We are given a finite field F with ¢ = p® elements, and an equation

Y24 a1 XY 4 a3y = X3+ axX? 4+ as X + ag

with coefficients a; € F (a cubic Weierstrass equation).
Question: compute x,y € [F that satisfy the equation.

Well-known: if the curve defined by the equation is nonsingular,
its projective closure is an elliptic curve over I, i.e., a curve of
genus 1 with a specified F-rational point — which is at infinity.



Answers

First try:

1. Guess a value for X.
2. See if the resulting quadratic equation in Y is solvable.

If not, go to step 1.
3. Solve it using a probabilistic root taking algorithm (Tonelli-

Shanks, or Cantor-Zassenhaus).

Question (Schoof 1985): is there an efficient deterministic algo-
rithm?

Answer: vyes, there is! The algorithm I will present

e iS long and complicated...
e uses group theory, theory of algebras and some geometry
e takes about cubic time in logg when using fast arithmetic



Reductions

We assume charF = 2 — for the case of characteristic 2, listen to
the next talk.

Now we can complete the square, and get a simpler Weierstrass
equation

V2 = X34 aX?+bX + ¢ =ger f(X).
This equation is singular iff f(X) has a double root in F.
In the singular case, it is easy to compute the coordinates of the

singular point; and in fact, we can use this point to parametrise
the entire curve.

For the rest of the talk, the equation Y2 = f(X) is supposed to
be nonsingular.



Geometric setting

Let £ be an elliptic curve over F, and consider the threefold
Ex E X FE.
The curve E possesses an elliptic involution
—1:F—FE:(x,y)— (z,—y),0— O.

Thus, on E3, there is an action of G = {+1}3. Consider the
subgroup H of G consisting of

{(1,1,1),(-1,-1,1),(—1,1,-1),(1,—-1,—-1)},

a Klein 4-group.



Geometric setting (II)

We construct the quotient of E3 with respect to the action of H,
and get a (very singular) threefold

V = E3/H.

Doing some Galois theory on the function field of E3, we find an
affine model of V:

V(X1 f(X2)f(X3) =Y?2

(The idea of using this threefold is due to Mariusz Skatba.)
(In characteristic 2, there is a comparable model — see next talk.)

We will solve two subproblems:

1. Show how to construct points on V;

2. Show how every point P on V leads to a point on FE.



On square roots

We first treat the latter question. Observe that if

f(z1) f(x2)f(x3)

is a square y2, then at least one of the f(z;) is a square itself.

Lemma. If a,b € F* are such that ord(b) has more factors 2 than
ord(a), then a deterministic variant of the Tonelli-Shanks algorithm
can compute a square root of a using b.

But even if all three of ord(f(x;)) have equally many factors 2,
then ordy must have more!l So in any case, we can get a square
root of at least one of the f(x;).



Squaring in Fj3 and Fi;

13 -1 =22.3; 17 — 1 = 2%:
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The level of an element in the tree (where the root has level 0) is
equal to the number of factors 2 in its order!



A rationally ruled surface
The first step to finding points on the threefold V is a rational
map
.5 —=V
where S is a rationally ruled surface over [F.

Most of the ruling curves on S are conic sections over [, and we
have

Theorem. There exists a deterministic efficient algorithm that
can solve an equation

az? + by2 =_c
over a finite field.

Having a rational point, we can easily parametrise the conic sec-
tion, and thus parametrise a genus O curve on the threefold V.



Solving quadratic equations

Given an equation az? 4 by? = ¢, with abc # 0, we first divide by ¢
to get

az’ + by2 = 1.

If ord(a) has more factors 2 than ord(b), we can take a square root
of b.

If the levels of ¢ and b are equal, then this common level is:
0: we can take square roots of a and b anyway
> 1: we can take a square root of —a/b and get az? —ay? =1

1: we can take square roots of —a and —b and get z2 + y2 = —1.

The last one is tricky; I use a “bisection” to solve it.



Geometric details

The surface S is given by
y?h(u,v) = —f(u)
where

h(u,v) =u2—|—uv—|—v2—|—a(u—|—v) + b
is such that A(u,u) = f/(u).

Computations in the étale algebra F[X]/(f) show that the rational
map

f) fut y2>>
y3
sends points on S to V (see the proceedings article).

(U,’U,’y) = (ua_a’_u_v7u+y27



Norms in the elliptic algebra

Consider R = F[X]/(f) = F[0]. Using the norm from R to [, we
see that, for any a € F,

Norm(a — 0) = f(a).
Thus, we consider

o(u,v,w) = (u—0)(v—0)(w—0)

and hope that its norm will be a square.
If we stipulate a + v+ v+ w = 0O, then

f(u) )
h(u,v/)

So, if we restrict ourselves to the surface S defined by

— f(u) = v?h(u,v)...

F(w) f(0) f(w) = Norm ¢(u, v, w) = —h(u,v)>f (u -



Proofs...

of the results on square roots and quadratic equations are in my
Ph.D. thesis

DETERMINISTIC EQUATION
SOLVYING OVER FINITE FIELDS

Deterministic equation
solving over finite fields
(U. Leiden, 2006)

which you are welcome to take a copy of (just ask me).



The End



