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The Question

We are given a finite field F with q = pe elements, and an equation

Y 2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

with coefficients ai ∈ F (a cubic Weierstrass equation).

Question: compute x, y ∈ F that satisfy the equation.

Well-known: if the curve defined by the equation is nonsingular,

its projective closure is an elliptic curve over F, i.e., a curve of

genus 1 with a specified F-rational point — which is at infinity.



Answers

First try:

1. Guess a value for X.

2. See if the resulting quadratic equation in Y is solvable.

If not, go to step 1.

3. Solve it using a probabilistic root taking algorithm (Tonelli-

Shanks, or Cantor-Zassenhaus).

Question (Schoof 1985): is there an efficient deterministic algo-

rithm?

Answer: yes, there is! The algorithm I will present

• is long and complicated...

• uses group theory, theory of algebras and some geometry

• takes about cubic time in log q when using fast arithmetic



Reductions

We assume char F 6= 2 — for the case of characteristic 2, listen to

the next talk.

Now we can complete the square, and get a simpler Weierstrass

equation

Y 2 = X3 + aX2 + bX + c =def f(X).

This equation is singular iff f(X) has a double root in F.

In the singular case, it is easy to compute the coordinates of the

singular point; and in fact, we can use this point to parametrise

the entire curve.

For the rest of the talk, the equation Y 2 = f(X) is supposed to

be nonsingular.



Geometric setting

Let E be an elliptic curve over F, and consider the threefold

E × E × E.

The curve E possesses an elliptic involution

−1 : E → E : (x, y) 7→ (x,−y),O 7→ O.

Thus, on E3, there is an action of G = {±1}3. Consider the

subgroup H of G consisting of

{(1,1,1), (−1,−1,1), (−1,1,−1), (1,−1,−1)},

a Klein 4-group.



Geometric setting (II)

We construct the quotient of E3 with respect to the action of H,

and get a (very singular) threefold

V = E3/H.

Doing some Galois theory on the function field of E3, we find an

affine model of V :

V : f(X1)f(X2)f(X3) = Y 2.

(The idea of using this threefold is due to Mariusz SkaÃlba.)

(In characteristic 2, there is a comparable model — see next talk.)

We will solve two subproblems:

1. Show how to construct points on V ;

2. Show how every point P on V leads to a point on E.



On square roots

We first treat the latter question. Observe that if

f(x1)f(x2)f(x3)

is a square y2, then at least one of the f(xi) is a square itself.

Lemma. If a, b ∈ F∗ are such that ord(b) has more factors 2 than

ord(a), then a deterministic variant of the Tonelli-Shanks algorithm

can compute a square root of a using b.

But even if all three of ord(f(xi)) have equally many factors 2,

then ord y must have more! So in any case, we can get a square

root of at least one of the f(xi).



Squaring in F
∗
13 and F

∗
17

13 − 1 = 22 · 3: 17 − 1 = 24:
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The level of an element in the tree (where the root has level 0) is

equal to the number of factors 2 in its order!



A rationally ruled surface

The first step to finding points on the threefold V is a rational

map

φ : S → V

where S is a rationally ruled surface over F.

Most of the ruling curves on S are conic sections over F, and we

have

Theorem. There exists a deterministic efficient algorithm that

can solve an equation

ax2 + by2 = c

over a finite field.

Having a rational point, we can easily parametrise the conic sec-

tion, and thus parametrise a genus 0 curve on the threefold V .



Solving quadratic equations

Given an equation ax2 + by2 = c, with abc 6= 0, we first divide by c

to get

ax2 + by2 = 1.

If ord(a) has more factors 2 than ord(b), we can take a square root

of b.

If the levels of a and b are equal, then this common level is:

0: we can take square roots of a and b anyway

> 1: we can take a square root of −a/b and get ax2 − ay2 = 1

1: we can take square roots of −a and −b and get x2 + y2 = −1.

The last one is tricky; I use a “bisection” to solve it.



Geometric details

The surface S is given by

y2h(u, v) = −f(u)

where

h(u, v) = u2 + uv + v2 + a(u + v) + b

is such that h(u, u) = f ′(u).

Computations in the étale algebra F[X]/(f) show that the rational

map

(u, v, y) 7→

(

u,−a − u − v, u + y2,−
f(u)f(u + y2)

y3

)

sends points on S to V (see the proceedings article).



Norms in the elliptic algebra

Consider R = F[X]/(f) = F[θ]. Using the norm from R to F, we

see that, for any a ∈ F,

Norm(a − θ) = f(a).

Thus, we consider

φ(u, v, w) = (u − θ)(v − θ)(w − θ)

and hope that its norm will be a square.

If we stipulate a + u + v + w = 0, then

f(u)f(v)f(w) = Normφ(u, v, w) = −h(u, v)3f

(

u −
f(u)

h(u, v

)

.

So, if we restrict ourselves to the surface S defined by

−f(u) = y2h(u, v)...



Proofs...

of the results on square roots and quadratic equations are in my

Ph.D. thesis

Deterministic equation

solving over finite fields

(U. Leiden, 2006)

which you are welcome to take a copy of (just ask me).



The End


