Fibred products of number systems

Christiaan van de Woestijne
Lehrstuhl für Mathematik und Statistik
Montanuniversität Leoben, Austria

Supported by the FWF, project S9611

> Numération 2011
> Liège, 6-10 June 2011

Simultaneous number systems

Defined in Indlekofer-Kátai-Racskó (1992). Example:

$$
100=(153344)_{(-3,-4)}
$$

How do we find this?

$$
\begin{aligned}
(100,100) & \xrightarrow{4}\left(\frac{100-4}{-3}, \frac{100-4}{-4}\right)=(-32,-24) \\
& \xrightarrow[\rightarrow]{4}(12,7) \xrightarrow{3}(-3,-1) \xrightarrow{3}(2,1) \xrightarrow{5}(1,1) \xrightarrow{1}(0,0) .
\end{aligned}
$$

To find (for example) the digit 5, we need a digit d such that

$$
\begin{cases}d \equiv 2 & (\bmod 3) \\ d \equiv 1 & (\bmod 4)\end{cases}
$$

For this, of course, we use the Chinese remainder theorem.

Theorem Every integer has exactly one double expansion like this, with digits $\{0, \ldots, 11\}$.

Simultaneous number systems

Question: given distinct integers N_{1}, \ldots, N_{k} with $\left|N_{i}\right| \geq 2$, does every integer a admit a set of representations of the form

$$
a=\sum d_{i} N_{j}^{i} \quad(j=1, \ldots, k) ?
$$

If so, then we have a simultaneous number system.
Theorem (IKR) The only possibility is $k=2$, with $N_{1}+1=N_{2} \leq$ -2 .

Why?!

Theorem (Pethő) If (a_{1}, a_{2}) is representable, then it is integrally interpolable by $\left(X-N_{1}, X-N_{2}\right)$: there exists $f \in \mathbb{Z}[X]$ such that

$$
\left\{\begin{array}{l}
f \equiv a_{1} \quad\left(\bmod X-N_{1}\right) \\
f \equiv a_{2} \quad\left(\bmod X-N_{2}\right)
\end{array}\right.
$$

This leads us to the Chinese remainder theorem for polynomials.

Number systems and pre-number systems

We define a pre-number system as a triple (V, ϕ, \mathcal{D}), where

- V is an Abelian group;
- ϕ is an endomorphism of V of finite cokernel;
- \mathcal{D} is a finite subset of V containing a system of representatives of V modulo $\phi(V)$.

A pre-number system (V, ϕ, \mathcal{D}) is a number system if there exist finite expansions

$$
a=\sum_{i=0}^{\ell} \phi^{i}\left(d_{i}\right) \quad\left(d_{i} \in \mathcal{D}\right)
$$

for all $a \in V$.
We are ultimately interested in the classification of all number systems.

Examples

- $(\mathbb{Z}, b,\{0, \ldots,|b|-1\})$ is a pre-number system whenever $b \neq 0$, has periodic expansions whenever $|b| \geq 2$, and is a number system if and only if $b \leq-2$.
- $\left(\mathbb{Z}[i], b,\left\{0, \ldots,|b|^{2}-1\right\}\right)$ is a pre-number system whenever $b \neq 0$, has periodic expansions whenever $|b|>1$, and is a number system if and only if $b=-a \pm \mathrm{i}$, for some $a \in \mathbb{N}$.
- $(\mathbb{Z}[X] /((X-5)(X-7)), X,\{1,-1,3,-3,5, X, X-2,-X+2$, $X-4,-X+4, X-6,-X+6, X-8,-X+8,-X+10,2 X-7$, $2 X-9,-2 X+9,2 X-11,-2 X+11,2 X-13,-2 X+13$, $-2 X+15,3 X-14,3 X-16,-3 X+16,-3 X+18,3 X-18$, $-3 X+20,4 X-21,4 X-23,-4 X+23,-4 X+25,5 X-28$, $-5 X+30\}$) is a number system (proof: to come!).

Example: the odd digits

Theorem Assume $V=\mathbb{Z}$ and ϕ is multiplication by some integer b.
Let b be odd, $|b| \geq 3$, and let

$$
\mathcal{D}_{\text {odd }}:=\{-|b|+2,-|b|+4, \ldots,-1,1, \ldots,|b|-2, b\} .
$$

This is a valid digit set for all odd b.

For $b=3$: it's $\{-1,1,3\}$. We get $0=3 \cdot 1+(-1) \cdot 3$.

a	$(a)_{3, \text { odd }}$						
0	$\overline{1} 3$	5	$1 \overline{11}$	-1	$\overline{1}$	-6	$\overline{1} 133$
1	1	6	13	-2	$\overline{1} 1$	-7	$\overline{1} 1 \overline{1}$
2	$1 \overline{1}$	7	$1 \overline{1} 1$	-3	$\overline{1} 13$	-8	$\overline{1} 131$
3	3	8	$3 \overline{1}$	-4	$\overline{11}$	-9	$\overline{113}$
4	11	9	$1 \overline{1} 3$	-5	$\overline{1} 11$	-10	$\overline{1} 13 \overline{1}$

Properties

If (V, ϕ, \mathcal{D}) is a number system, then we call \mathcal{D} a valid digit set for (V, ϕ).

If \mathcal{D} contains elements that are congruent modulo $\phi(V)$, we call it redundant, otherwise irredundant.

Theorem (Okazaki/CvdW) If (V, ϕ, \mathcal{D}) is a number system, then

$$
V \cong V^{\text {tor }} \times H \text { where } H \cong V / V^{\text {tor }}
$$

Also, H is a subgroup of a finite-dimensional \mathbb{Q}-vector space, so ϕ can be given by a finite-dimensional matrix over \mathbb{Q}.

Today, we consider V of the form $\mathbb{Z}[X] /(P)$, with $P \in \mathbb{Z}[X]$ nonconstant, or closely related groups.

Direct product

Note that when (V, ϕ, \mathcal{D}) and (W, ψ, \mathcal{E}) are pre-number systems, the direct product $(V \times W, \phi \times \psi, \mathcal{D} \times \mathcal{E})$ is well-defined.

Suppose (V, ϕ, \mathcal{D}) and (W, ψ, \mathcal{E}) are number systems. What about the direct product? Example: suppose we have

$$
\begin{aligned}
a & =d_{0}+\phi d_{1}+\phi^{2} d_{2}+\ldots+\phi^{\ell} d_{\ell} \\
b & =e_{0}+\psi e_{1}+\psi^{2} e_{2}+\ldots+\psi^{\ell} e_{\ell}+\psi^{\ell+1} e_{\ell+1}
\end{aligned}
$$

Then we write:

$$
(a, b)=\left(d_{0}, e_{0}\right)+(\phi, \psi)\left(d_{1}, e_{1}\right)+\ldots+\left(\phi^{\ell}, \psi^{\ell}\right)\left(d_{\ell}, e_{\ell}\right)+? ? ?
$$

and now we are stuck, because of the differing lengths. Can we use padding with zeros (zero periods) to make then equal?

Theorem Every number system has a zero period. If that of (V, ϕ, \mathcal{D}) has length ℓ and that of (W, ψ, \mathcal{E}) length m, then $(V \times$ $W, \phi \times \psi, \mathcal{D} \times \mathcal{E})$ is a number system if and only if $(\ell, m)=1$.

Projections

Suppose f is a CNS polynomial, so

$$
(\mathbb{Z}[X] /(f), X,\{0, \ldots,|f(0)|-1\})
$$

is a number system. If $f=f_{1} f_{2}$, then trivially also

$$
\left(\mathbb{Z}[X] /\left(f_{i}\right), X,\{0, \ldots,|f(0)|-1\}\right) \quad(i=1,2)
$$

are number systems (with possibly redundant digit sets): if

$$
a=\sum_{i=0}^{\ell} d_{i} X^{i} \quad(\bmod f)
$$

then the same expansion is true modulo f_{1} and f_{2}.

Can we go in the other direction? What is the relation with the direct product

$$
\left(\frac{\mathbb{Z}[X]}{f_{1}}, X, \mathcal{D}_{1}\right) \times\left(\frac{\mathbb{Z}[X]}{f_{2}}, X, \mathcal{D}_{2}\right) ?
$$

The Chinese Remainder Theorem

Everybody knows this formulation: if $(n, m)=1$, then

$$
\mathbb{Z} / n m \mathbb{Z} \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

How about this one: if $(f, g)=1$, with $f, g \in \mathbb{Z}[X]$, then

$$
\mathbb{Z}[X] /(f g) \cong \mathbb{Z}[X] /(f) \times \mathbb{Z}[X] /(g) ?
$$

This is false in general! In $\mathbb{Q}[X]$ it works, because $\mathbb{Q}[X]$ is a PID, but $\mathbb{Z}[X]$ is not a PID. The correct statement is

$$
\mathbb{Z}[X] /(f g) \cong \mathbb{Z}[X] /(f) \times_{\mathbb{Z}}[X] /(f, g) \quad \mathbb{Z}[X] /(g)
$$

where given maps $A \xrightarrow{\mu} C \stackrel{\nu}{\longleftarrow} B$, the fibred product $A \times_{C} B$ is defined as

$$
\{(a, b) \in A \times B \mid \mu(a)=\nu(b)\}
$$

Really coprime polynomials

We have $\mathbb{Z}[X] /(f g) \cong \mathbb{Z}[X] /(f) \times_{\mathbb{Z}}[X] /(f, g) \mathbb{Z}[X] /(g)$.
Now suppose $(f, g)=(1)$ (let's call this really coprime); then $\mathbb{Z}[X] /(f, g)$ is the zero ring, so the fibred product is just the direct product.
Recall that there exist $u, v \in \mathbb{Z}[X]$ with $u f+v g=\operatorname{Res}(f, g)$. Thus:
Theorem Suppose $f, g \in \mathbb{Z}[X]$ have $\operatorname{Res}(f, g)=1$. Then $(f, g)=$ (1). If the leading coefficients are coprime in \mathbb{Z}, then the converse also holds, because then we have $|\mathbb{Z}[X] /(f, g)|=|\operatorname{Res}(f, g)|$.

But (Myerson): let $f=2 X+1$ and $g=2 X+\left(1+2^{e}\right)$ for some $e \geq 1$. Then $\operatorname{Res}(f, g)=2^{e}$, but $(f, g)=(1)$.

In general, $\mathbb{Z}[X] /(f, g)$ has a complicated structure! Can be determined using strong Gröbner bases over \mathbb{Z}.

Conclusion (first try)

Theorem If $\left(\mathbb{Z}[X] /\left(f_{i}\right), X, \mathcal{D}_{i}\right)$, for $i=1,2$, are number systems, with coprime zero period lengths, and $\left(f_{1}, f_{2}\right)=1$, then

$$
\left(\mathbb{Z}[X] /\left(f_{1}\right), X, \mathcal{D}_{1}\right) \times\left(\mathbb{Z}[X] /\left(f_{2}\right), X, \mathcal{D}_{2}\right) \cong\left(\mathbb{Z}[X] /\left(f_{1} f_{2}\right), X, \mathcal{E}\right)
$$

with $\mathcal{E}=\mathcal{D}_{1} \times \mathcal{D}_{2}$ via the CRT.

Of course, when we reduce \mathcal{E} modulo f_{i}, we should get \mathcal{D}_{i}. So unfortunately we conclude that even when \mathcal{D}_{1} and \mathcal{D}_{2} are the canonical digits,

$$
\mathcal{E} \neq\left\{0,1, \ldots,\left|f_{1}(0) f_{2}(0)-1\right|\right\}
$$

(the canonical digits for $f_{1} f_{2}$)!

Not really coprime polynomials

We still have $\mathbb{Z}[X] /(f g) \cong \mathbb{Z}[X] /(f) \times_{\mathbb{Z}}[X] /(f, g) \mathbb{Z}[X] /(g)$.
Try to extend this to number systems, so assume we have digits \mathcal{D}_{i}, and try to form digits modulo $f g$ using the isomorphism.

It follows that $d \equiv d^{\prime}(\bmod (f, g))$ for all $d, d^{\prime} \in \mathcal{D}_{1} \cup \mathcal{D}_{2}!!!$
In particular, \mathcal{D}_{1} and \mathcal{D}_{2} cannot contain $0 \ldots$ this would mean that all digits are in the ideal (f, g), and hence we could only expand elements of this ideal!

Let's try an example: $f=X-3, g=X-5$, so $(f, g)=(2)$ and

$$
\mathbb{Z}[X] /(f, g) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

It follows that all digits must be 1 modulo 2 ! But wait...

A worked example

We have the odd digits $\{-1,1,3\}$ for $X-3$ and $\{-3,-1,1,3,5\}$ for $X-5$. Now use the Chinese Remainder Theorem, and get digits
$\{1,-1,3,-3, X, 3 X-10,-X+4,2 X-5,-3 X+12, X-4$, $-2 X+9,-X+2,2 X-7,-X+6, X-2,-2 X+7\}$
for $(X-3)(X-5)$.

Using some more technical stuff, we will show that this digit set is valid.

Necessity: if we had digits 1 and 2, respectively, the isomorphism gives $\frac{1}{2}(X-1)$, which is not integral, and this residue class is uniquely determined, by the CRT for $\mathbb{Q}[X]$.

Technical stuff

Following the map of reduction modulo (f, g), we obtain a number system in the finite ring $R=\mathbb{Z}[X] /(f, g)$; as we have seen, we assume there is just one digit d in this number system.

So all possible expansions are $d, d+d X, d+d X+d X^{2}, \ldots$, and these must cover all elements of R. It follows that d is a unit of R and the sequence

$$
S: 1,1+X, 1+X+X^{2}, \ldots
$$

has period $|R|$.

These conditions are obviously fulfilled in the example: $d=1$, and $X \equiv 3 \equiv 1$ as well, so 1 and $1+X=0$ cover $\mathbb{Z} / 2 \mathbb{Z}$.

Finally, $0=(-1,3)_{3, \text { odd }}=(-1,5)_{5, \text { odd }}$, and the gcd of these lengths is 2.

One-sidedly linear case

From now on, suppose f and g are monic nonconstant and $f=$ $X-a$ is linear. Then we know that

$$
\mathbb{Z}[X] /(f, g) \cong \mathbb{Z} /(\operatorname{Res}(f, g))=\mathbb{Z} /(g(a))
$$

If $a \equiv 1(\bmod g(a))$, then $X=1$ in the ring R, so of course the sequence S covers R.

Put $s_{n}=1+X+\ldots+X^{n}$; we have $s_{n+1}=X s_{n}+1$, a linear congruential sequence as used in random number generation.

So, to compute the period of S we can use results about LCSs (e.g. Knuth): we need $X \equiv 1(\bmod p)$ for all primes p dividing $|R|$, and $X \equiv 1(\bmod 4)$ if 4 divides $|R|$.

These conditions only depend on f and g, so for example if $f=$ $X+4$ and $g=X+7$, there are no valid irredundant digit sets that give rise to a number system modulo $(X+4)(X+7)$.

Conclusion (second try)

Theorem Let $f, g \in \mathbb{Z}[X]$ be monic, nonconstant and coprime with $f=X-a,|a| \geq 2$. Let $R=Z[X] /(f, g)$. Then the Chinese Remainder Theorem yields an isomorphism of number systems

$$
(\mathbb{Z}[X] /(f g), X, \mathcal{E}) \cong(\mathbb{Z}, a, \mathcal{D}) \times_{R}\left(\mathbb{Z}[X] /(g), X, \mathcal{D}^{\prime}\right)
$$

if and only if

- \mathcal{E} is the inverse image of $\mathcal{D} \times \mathcal{D}^{\prime}$ under the CRT isomorphism;
- $(\mathbb{Z}, a, \mathcal{D})$ and $\left(\mathbb{Z}[X] /(g), X, \mathcal{D}^{\prime}\right)$ are number systems with zero cycle lengths L and L^{\prime}, where $\left(L, L^{\prime}\right)=|R|$;
- $X \equiv 1(\bmod p)$ for all primes p dividing $|R|$ and $X \equiv 1(\bmod 4)$ if $4||R|$;
- there exists $d_{0} \in R^{*}$ such that $d \equiv d_{0}(\bmod (f, g))$ for all $d \in$ $\mathcal{D} \cup \mathcal{D}^{\prime}$.

Back to simultaneous number systems:

Theorem The integers N_{1}, \ldots, N_{k} form a simultaneous number system with digits $\left\{0, \ldots,\left|N_{1} \cdots N_{k}\right|-1\right\}$ if and only if

$$
\mathbb{Z}[X] /\left(X-N_{1}\right) \times \cdots \times \mathbb{Z}[X] /\left(X-N_{k}\right) \cong \frac{\mathbb{Z}[X]}{\left(X-N_{1}\right) \cdots\left(X-N_{k}\right)}
$$

But $\operatorname{Res}\left(X-N_{i}, X-N_{j}\right)=N_{i}-N_{j}$, so if all resultants are ± 1, we indeed find $k=2$ and $\left|N_{1}-N_{2}\right|=1$, which is IKR's result.

Theorem Let $f_{1}, \ldots, f_{k} \in \mathbb{Z}[X]$ be coprime, let $f=\prod_{i} f_{i}$, and let \mathcal{D} be a digit set for f. Then we have a simultaneous number system in $\mathbb{Z}[X] /\left(f_{i}\right)$, for $i=1, \ldots, k$, with digits \mathcal{D} if and only if:

- $(\mathbb{Z}[X] /(f), X, \mathcal{D})$ is a number system;
- the f_{i} are really coprime.

The last condition ensures that every tuple in $\oplus_{i=1}^{k} \mathbb{Z}[X] /\left(f_{i}\right)$ is integrally interpolable, hence Pethő's result from before.

Example

Theorem For $a \in \mathbb{Z}$ with $a \leq-7$, let

$$
\begin{aligned}
& f_{a}=(X-a)(X-a-1)-1 \\
& g_{a}=f_{a}+X-a-1 \\
& h_{a}=f_{a}+X-a-2
\end{aligned}
$$

Let $\mathcal{R}=\left\{0,1, \ldots,\left|f_{a}(0) g_{a}(0) h_{a}(0)\right|-1\right\}$. Then f_{a}, g_{a}, and h_{a} are irreducible and coprime, and together with \mathcal{R} define a simultaneous number system.

Proof:

We have $h_{a}=g_{a}-1$, so trivially $\left|\operatorname{Res}\left(g_{a}, h_{a}\right)\right|=1$, and also:

$$
\begin{aligned}
& \operatorname{Res}\left(f_{a}, g_{a}\right)=\operatorname{Res}\left(f_{a}, X-a-1\right)=f_{a}(a+1)=-1 \\
& \operatorname{Res}\left(f_{a}, h_{a}\right)=\operatorname{Res}\left(f_{a}, X-a-2\right)=f_{a}(a+2)=1
\end{aligned}
$$

If a is large enough, the coefficients of $f=f_{a} g_{a} h_{a}$ are strictly increasing, so f is a CNS polynomial by B. Kovács's criterion!

Final question

Can anybody give an infinite set of pairwise really coprime polynomials, or even with pairwise resultant ± 1 ?

My best effort:

$$
\begin{aligned}
& \left\{X-1, X, X^{2}-X+1, X^{3}-X+1, X^{4}-X^{3}+X^{2}-X+1\right. \\
& \left.X^{5}-2 X^{3}+3 X^{2}-2 X+1\right\}
\end{aligned}
$$

The end

