Fibred products of number systems

Christiaan van de Woestijne Lehrstuhl für Mathematik und Statistik Montanuniversität Leoben, Austria

Supported by the FWF, project S9611

Numération 2011 Liège, 6-10 June 2011

Simultaneous number systems

Defined in Indlekofer-Kátai-Racskó (1992). Example:

$$100 = (153344)_{(-3,-4)}$$

How do we find this?

$$(100, 100) \stackrel{4}{\to} \left(\frac{100 - 4}{-3}, \frac{100 - 4}{-4}\right) = (-32, -24)$$
$$\stackrel{4}{\to} (12, 7) \stackrel{3}{\to} (-3, -1) \stackrel{3}{\to} (2, 1) \stackrel{5}{\to} (1, 1) \stackrel{1}{\to} (0, 0).$$

To find (for example) the digit 5, we need a digit d such that

$$d \equiv 2 \pmod{3};$$

 $d \equiv 1 \pmod{4}.$

For this, of course, we use the Chinese remainder theorem.

Theorem Every integer has exactly one double expansion like this, with digits $\{0, \ldots, 11\}$.

Simultaneous number systems

Question: given distinct integers N_1, \ldots, N_k with $|N_i| \ge 2$, does every integer a admit a set of representations of the form

$$a = \sum d_i N_j^i \qquad (j = 1, \dots, k)?$$

If so, then we have a simultaneous number system.

Theorem (IKR) The only possibility is k = 2, with $N_1 + 1 = N_2 \leq -2$.

Why?!

Theorem (Pethő) If (a_1, a_2) is representable, then it is integrally interpolable by $(X - N_1, X - N_2)$: there exists $f \in \mathbb{Z}[X]$ such that

$$f \equiv a_1 \pmod{X - N_1};$$

 $f \equiv a_2 \pmod{X - N_2}.$

This leads us to the Chinese remainder theorem for polynomials.

Number systems and pre-number systems

We define a pre-number system as a triple (V, ϕ, \mathcal{D}) , where

- V is an Abelian group;
- ϕ is an endomorphism of V of finite cokernel;
- \mathcal{D} is a finite subset of V containing a system of representatives of V modulo $\phi(V)$.

A pre-number system (V, ϕ, D) is a number system if there exist finite expansions

$$a = \sum_{i=0}^{\ell} \phi^i(d_i) \qquad (d_i \in \mathcal{D})$$

for all $a \in V$.

We are ultimately interested in the classification of all number systems.

Examples

- $(\mathbb{Z}, b, \{0, \ldots, |b| 1\})$ is a pre-number system whenever $b \neq 0$, has periodic expansions whenever $|b| \geq 2$, and is a number system if and only if $b \leq -2$.
- $(\mathbb{Z}[i], b, \{0, \ldots, |b|^2 1\})$ is a pre-number system whenever $b \neq 0$, has periodic expansions whenever |b| > 1, and is a number system if and only if $b = -a \pm i$, for some $a \in \mathbb{N}$.
- $(\mathbb{Z}[X]/((X-5)(X-7)), X, \{1, -1, 3, -3, 5, X, X-2, -X+2, X-4, -X+4, X-6, -X+6, X-8, -X+8, -X+10, 2X-7, 2X-9, -2X+9, 2X-11, -2X+11, 2X-13, -2X+13, -2X+15, 3X-14, 3X-16, -3X+16, -3X+18, 3X-18, -3X+20, 4X-21, 4X-23, -4X+23, -4X+25, 5X-28, -5X+30\})$ is a number system (proof: to come!).

Example: the odd digits

Theorem Assume $V = \mathbb{Z}$ and ϕ is multiplication by some integer b. Let b be odd, $|b| \ge 3$, and let

$$\mathcal{D}_{\text{odd}} := \{-|b|+2, -|b|+4, \dots, -1, 1, \dots, |b|-2, b\}.$$

This is a valid digit set for all odd b.

For b = 3: it's $\{-1, 1, 3\}$. We get $0 = 3 \cdot 1 + (-1) \cdot 3$.

a	$(a)_{3,odd}$	a	$(a)_{3,odd}$	a	$(a)_{3,odd}$	a	$(a)_{3,odd}$
0	13	5	$1\overline{\overline{11}}$	-1	$\overline{1}$	-6	1133
1	1	6	13	-2	$\overline{1}1$	-7	$\overline{1}1\overline{1}$
2	$1\overline{1}$	7	$1\overline{1}1$	-3	113	-8	$\overline{1}131$
3	3	8	31	-4	$\overline{11}$	-9	113
4	11	9	113	-5	$\overline{1}11$	-10	1131

Properties

If (V, ϕ, D) is a number system, then we call D a valid digit set for (V, ϕ) .

If \mathcal{D} contains elements that are congruent modulo $\phi(V)$, we call it redundant, otherwise irredundant.

Theorem (Okazaki/CvdW) If (V, ϕ, \mathcal{D}) is a number system, then $V \cong V^{\text{tor}} \times H$ where $H \cong V/V^{\text{tor}}$.

Also, *H* is a subgroup of a finite-dimensional \mathbb{Q} -vector space, so ϕ can be given by a finite-dimensional matrix over \mathbb{Q} .

Today, we consider V of the form $\mathbb{Z}[X]/(P)$, with $P \in \mathbb{Z}[X]$ nonconstant, or closely related groups.

Direct product

Note that when (V, ϕ, D) and (W, ψ, \mathcal{E}) are pre-number systems, the direct product $(V \times W, \phi \times \psi, D \times \mathcal{E})$ is well-defined.

Suppose (V, ϕ, D) and (W, ψ, \mathcal{E}) are number systems. What about the direct product? Example: suppose we have

$$a = d_0 + \phi d_1 + \phi^2 d_2 + \dots + \phi^{\ell} d_{\ell};$$

$$b = e_0 + \psi e_1 + \psi^2 e_2 + \dots + \psi^{\ell} e_{\ell} + \psi^{\ell+1} e_{\ell+1}.$$

Then we write:

$$(a,b) = (d_0, e_0) + (\phi, \psi)(d_1, e_1) + \ldots + (\phi^{\ell}, \psi^{\ell})(d_{\ell}, e_{\ell}) + ???$$

and now we are stuck, because of the differing lengths. Can we use padding with zeros (zero periods) to make then equal?

Theorem Every number system has a zero period. If that of (V, ϕ, \mathcal{D}) has length ℓ and that of (W, ψ, \mathcal{E}) length m, then $(V \times W, \phi \times \psi, \mathcal{D} \times \mathcal{E})$ is a number system if and only if $(\ell, m) = 1$.

Projections

Suppose f is a CNS polynomial, so

 $(\mathbb{Z}[X]/(f), X, \{0, \ldots, |f(0)| - 1\})$

is a number system. If $f = f_1 f_2$, then trivially also

 $(\mathbb{Z}[X]/(f_i), X, \{0, \dots, |f(0)| - 1\})$ (i = 1, 2)

are number systems (with possibly redundant digit sets): if

$$a = \sum_{i=0}^{\ell} d_i X^i \pmod{f},$$

then the same expansion is true modulo f_1 and f_2 .

Can we go in the other direction? What is the relation with the direct product

$$\left(\frac{\mathbb{Z}[X]}{f_1}, X, \mathcal{D}_1\right) \times \left(\frac{\mathbb{Z}[X]}{f_2}, X, \mathcal{D}_2\right)$$
?

The Chinese Remainder Theorem

Everybody knows this formulation: if (n,m) = 1, then

 $\mathbb{Z}/nm\mathbb{Z}\cong\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/m\mathbb{Z}.$

How about this one: if (f,g) = 1, with $f,g \in \mathbb{Z}[X]$, then

 $\mathbb{Z}[X]/(fg) \cong \mathbb{Z}[X]/(f) \times \mathbb{Z}[X]/(g) ?$

This is false in general! In $\mathbb{Q}[X]$ it works, because $\mathbb{Q}[X]$ is a PID, but $\mathbb{Z}[X]$ is not a PID. The correct statement is

 $\mathbb{Z}[X]/(fg) \cong \mathbb{Z}[X]/(f) \times_{\mathbb{Z}[X]/(f,g)} \mathbb{Z}[X]/(g),$

where given maps $A \xrightarrow{\mu} C \xleftarrow{\nu} B$, the fibred product $A \times_C B$ is defined as

$$\{(a,b) \in A \times B \mid \mu(a) = \nu(b)\}.$$

Really coprime polynomials

We have $\mathbb{Z}[X]/(fg) \cong \mathbb{Z}[X]/(f) \times_{\mathbb{Z}[X]/(f,g)} \mathbb{Z}[X]/(g)$.

Now suppose (f,g) = (1) (let's call this really coprime); then $\mathbb{Z}[X]/(f,g)$ is the zero ring, so the fibred product is just the direct product.

Recall that there exist $u, v \in \mathbb{Z}[X]$ with uf + vg = Res(f, g). Thus:

Theorem Suppose $f,g \in \mathbb{Z}[X]$ have $\operatorname{Res}(f,g) = 1$. Then (f,g) = (1). If the leading coefficients are coprime in \mathbb{Z} , then the converse also holds, because then we have $|\mathbb{Z}[X]/(f,g)| = |\operatorname{Res}(f,g)|$.

But (Myerson): let f = 2X + 1 and $g = 2X + (1 + 2^e)$ for some $e \ge 1$. Then $\text{Res}(f,g) = 2^e$, but (f,g) = (1).

In general, $\mathbb{Z}[X]/(f,g)$ has a complicated structure! Can be determined using strong Gröbner bases over \mathbb{Z} .

Conclusion (first try)

Theorem If $(\mathbb{Z}[X]/(f_i), X, \mathcal{D}_i)$, for i = 1, 2, are number systems, with coprime zero period lengths, and $(f_1, f_2) = 1$, then

 $(\mathbb{Z}[X]/(f_1), X, \mathcal{D}_1) \times (\mathbb{Z}[X]/(f_2), X, \mathcal{D}_2) \cong (\mathbb{Z}[X]/(f_1f_2), X, \mathcal{E})$ with $\mathcal{E} = \mathcal{D}_1 \times \mathcal{D}_2$ via the CRT.

Of course, when we reduce \mathcal{E} modulo f_i , we should get \mathcal{D}_i . So unfortunately we conclude that even when \mathcal{D}_1 and \mathcal{D}_2 are the canonical digits,

 $\mathcal{E} \neq \{0, 1, \dots, |f_1(0)f_2(0) - 1|\}$

(the canonical digits for f_1f_2)!

Not really coprime polynomials

We still have $\mathbb{Z}[X]/(fg) \cong \mathbb{Z}[X]/(f) \times_{\mathbb{Z}[X]/(f,g)} \mathbb{Z}[X]/(g)$.

Try to extend this to number systems, so assume we have digits \mathcal{D}_i , and try to form digits modulo fg using the isomorphism.

It follows that $d \equiv d' \pmod{(f,g)}$ for all $d, d' \in \mathcal{D}_1 \cup \mathcal{D}_2!!!$

In particular, \mathcal{D}_1 and \mathcal{D}_2 cannot contain 0... this would mean that all digits are in the ideal (f,g), and hence we could only expand elements of this ideal!

Let's try an example: f = X - 3, g = X - 5, so (f,g) = (2) and $\mathbb{Z}[X]/(f,g) \cong \mathbb{Z}/2\mathbb{Z}$.

It follows that all digits must be 1 modulo 2! But wait...

A worked example

We have the odd digits $\{-1, 1, 3\}$ for X - 3 and $\{-3, -1, 1, 3, 5\}$ for X - 5. Now use the Chinese Remainder Theorem, and get digits

{1, -1, 3, -3, X,
$$3X - 10$$
, $-X + 4$, $2X - 5$, $-3X + 12$, $X - 4$, $-2X + 9$, $-X + 2$, $2X - 7$, $-X + 6$, $X - 2$, $-2X + 7$ }

for
$$(X - 3)(X - 5)$$
.

Using some more technical stuff, we will show that this digit set is valid.

Necessity: if we had digits 1 and 2, respectively, the isomorphism gives $\frac{1}{2}(X - 1)$, which is not integral, and this residue class is uniquely determined, by the CRT for $\mathbb{Q}[X]$.

Technical stuff

Following the map of reduction modulo (f,g), we obtain a number system in the finite ring $R = \mathbb{Z}[X]/(f,g)$; as we have seen, we assume there is just one digit d in this number system.

So all possible expansions are d, d + dX, $d + dX + dX^2$, ..., and these must cover all elements of R. It follows that d is a unit of R and the sequence

$$S: 1, 1 + X, 1 + X + X^2, \dots$$

has period |R|.

These conditions are obviously fulfilled in the example: d = 1, and $X \equiv 3 \equiv 1$ as well, so 1 and 1 + X = 0 cover $\mathbb{Z}/2\mathbb{Z}$.

Finally, $0 = (-1,3)_{3,odd} = (-1,5)_{5,odd}$, and the gcd of these lengths is 2.

One-sidedly linear case

From now on, suppose f and g are monic nonconstant and f = X - a is linear. Then we know that

 $\mathbb{Z}[X]/(f,g) \cong \mathbb{Z}/(\operatorname{Res}(f,g)) = \mathbb{Z}/(g(a)).$

If $a \equiv 1 \pmod{g(a)}$, then X = 1 in the ring R, so of course the sequence S covers R.

Put $s_n = 1 + X + ... + X^n$; we have $s_{n+1} = Xs_n + 1$, a linear congruential sequence as used in random number generation.

So, to compute the period of S we can use results about LCSs (e.g. Knuth): we need $X \equiv 1 \pmod{p}$ for all primes p dividing |R|, and $X \equiv 1 \pmod{4}$ if 4 divides |R|.

These conditions only depend on f and g, so for example if f = X + 4 and g = X + 7, there are no valid irredundant digit sets that give rise to a number system modulo (X + 4)(X + 7).

Conclusion (second try)

Theorem Let $f, g \in \mathbb{Z}[X]$ be monic, nonconstant and coprime with f = X - a, $|a| \ge 2$. Let R = Z[X]/(f,g). Then the Chinese Remainder Theorem yields an isomorphism of number systems

$$(\mathbb{Z}[X]/(fg), X, \mathcal{E}) \cong (\mathbb{Z}, a, \mathcal{D}) \times_R (\mathbb{Z}[X]/(g), X, \mathcal{D}')$$

if and only if

- \mathcal{E} is the inverse image of $\mathcal{D} \times \mathcal{D}'$ under the CRT isomorphism;
- $(\mathbb{Z}, a, \mathcal{D})$ and $(\mathbb{Z}[X]/(g), X, \mathcal{D}')$ are number systems with zero cycle lengths L and L', where (L, L') = |R|;
- $X \equiv 1 \pmod{p}$ for all primes p dividing |R| and $X \equiv 1 \pmod{4}$ if $4 \mid |R|$;
- there exists $d_0 \in R^*$ such that $d \equiv d_0 \pmod{(f,g)}$ for all $d \in \mathcal{D} \cup \mathcal{D}'$.

Back to simultaneous number systems:

Theorem The integers N_1, \ldots, N_k form a simultaneous number system with digits $\{0, \ldots, |N_1 \cdots N_k| - 1\}$ if and only if

$$\mathbb{Z}[X]/(X-N_1)\times\cdots\times\mathbb{Z}[X]/(X-N_k)\cong\frac{\mathbb{Z}[X]}{(X-N_1)\cdots(X-N_k)}.$$

But $\text{Res}(X - N_i, X - N_j) = N_i - N_j$, so if all resultants are ± 1 , we indeed find k = 2 and $|N_1 - N_2| = 1$, which is IKR's result.

Theorem Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ be coprime, let $f = \prod_i f_i$, and let \mathcal{D} be a digit set for f. Then we have a simultaneous number system in $\mathbb{Z}[X]/(f_i)$, for $i = 1, \ldots, k$, with digits \mathcal{D} if and only if:

- $(\mathbb{Z}[X]/(f), X, \mathcal{D})$ is a number system;
- the f_i are really coprime.

The last condition ensures that every tuple in $\bigoplus_{i=1}^{k} \mathbb{Z}[X]/(f_i)$ is integrally interpolable, hence Pethő's result from before.

Example

Theorem For $a \in \mathbb{Z}$ with $a \leq -7$, let

$$f_a = (X - a)(X - a - 1) - 1;$$

$$g_a = f_a + X - a - 1;$$

$$h_a = f_a + X - a - 2.$$

Let $\mathcal{R} = \{0, 1, ..., |f_a(0)g_a(0)h_a(0)| - 1\}$. Then f_a , g_a , and h_a are irreducible and coprime, and together with \mathcal{R} define a simultaneous number system.

Proof:

We have $h_a = g_a - 1$, so trivially $|\operatorname{Res}(g_a, h_a)| = 1$, and also:

$$Res(f_a, g_a) = Res(f_a, X - a - 1) = f_a(a + 1) = -1;$$

$$Res(f_a, h_a) = Res(f_a, X - a - 2) = f_a(a + 2) = 1.$$

If a is large enough, the coefficients of $f = f_a g_a h_a$ are strictly increasing, so f is a CNS polynomial by B. Kovács's criterion!

Final question

Can anybody give an infinite set of pairwise really coprime polynomials, or even with pairwise resultant ± 1 ?

My best effort:

{X - 1, X, $X^2 - X + 1$, $X^3 - X + 1$, $X^4 - X^3 + X^2 - X + 1$, $X^5 - 2X^3 + 3X^2 - 2X + 1$ }.

The end