A second look at binary digits

Christiaan van de Woestijne
(Supported by FWF Project S9606)
Institut für Mathematik B
Technische Universität Graz
Lehrstuhl für Mathematik und Statistik
Montanuniversität Leoben
ÖMG-DMV-Kongreß 2009, Graz 21-25 September 2009

Binary digits

Everybody knows that $(10)_{2}=2$ and $(11011)_{2}=27$.

Also, $-27=(-11011)_{2}$. Or is it?

Some computers know that $-27=(1111111111100101)$ (signed word), and that $32767+1=-32768$.

Some people know that $-1=(11111 \ldots)_{2} \in \mathbb{Z}_{2}$ (start with LSD here), and

$$
-27=(101001111 \ldots)_{2}
$$

Can we do better?

The expansion algorithm

Define the dynamic mapping $T: \mathbb{Z} \rightarrow \mathbb{Z}: a \mapsto \begin{cases}\frac{a}{2} & \text { if } a \text { even; } \\ \frac{a-1}{2} & \text { if } a \text { odd. }\end{cases}$
Now to expand a, write 0 if a even and 1 otherwise, and continue with $T(a)$. Done when $T^{n}(a)=0$.

Example: $27 \xrightarrow{1} 13 \xrightarrow{1} 6 \xrightarrow{0} 3 \xrightarrow{1} 1 \xrightarrow{1} 0$.
However, $-1 \xrightarrow{1}-1 \ldots$

Try other digits: $\mathcal{D}=\left\{d_{0}, d_{1}\right\}$, with $d_{i} \equiv i(\bmod 2)$.
Criterion for the existence of a 1 -cycle: $\frac{a-d}{2}=a \Leftrightarrow a=-d$. So this is hopeless!

Negabinary expansions

Try other basis -2 , with digits $\{0,1\}$:
$-27 \xrightarrow{1} 14 \xrightarrow{0}-7 \xrightarrow{1} 4 \xrightarrow{0}-2 \xrightarrow{0} 1 \xrightarrow{1} 0$, so $-27=(100101)_{-2}$.
Theorem (Grünwald 1885) All integers have a finite expansion on the integer basis $b \leq-2$ and digits $\{0,1, \ldots,|b|-1\}$.

Proof: there are no cycles except $0 \xrightarrow{0} 0$!

Excursion: the balanced ternary expansion uses basis +3 and digits $\{-1,0,1\}$, and expands all integers finitely. If only computers had three-way switches!

Theorem Let $a \in \mathbb{Z}_{3}$. Then $a \in \mathbb{Z}$ if and only if its balanced ternary expansion is finite.

A curious question

Definition A digit set \mathcal{D} is valid for basis ± 2 if all integers have a finite representation

$$
\sum_{i=0}^{\ell} d_{i}(\pm 2)^{i} \quad\left(d_{i} \in \mathcal{D}\right)
$$

We know that no digit sets are valid for basis +2 ; for basis -2 , we know the valid digit set $\{0,1\}$, and thus also $\{0,-1\}$ by an automorphism of the additive group.

Question Are there any others?

Answer Yes, infinitely many!

Expansions of zero

Is it possible to have a digit set without zero? Yes!

The definition of the mapping T and of the stopping criterion is the same (if you formulate it like I do!).

Example: basis -2 , digits $\{1,4\}$. Expand -27 :
$-27 \xrightarrow{1} 14 \xrightarrow{4}-5 \xrightarrow{1} 3 \xrightarrow{1}-1 \xrightarrow{1} 1 \xrightarrow{1} 0$, so $-27=(111141)_{-2}$.
Interesting: $0 \xrightarrow{4} 2 \xrightarrow{4} 1 \xrightarrow{1} 0$, a 3 -cycle!
So, $0=()_{-2}=(144)_{-2}=(144144)_{-2}=\ldots$
Theorem Any valid digit set gives rise to a nontrivial expansion of zero.

Experiments

The figure plots all pairs of integers (x, y), with $|x|,|y| \leq 200$, that are valid digit sets for basis -2.

Results

Theorem The digit set $\{d, D\}$ with $d<D$ is valid for basis -2 if and only if
(i) one of d, D is even and one is odd (trivial)
(ii) either $d D=0$ or $3 \nmid d D \quad$ (avoid 1 -cycles except 0)
(iii) we have $2 d \leq D$ and $2 D \geq d \quad$ (0 is expansible)
(iv) $D-d=3^{i}$ for some $i \geq 0 \quad$ (the real stuff!)

For example, the only valid digit sets with 0 are $\{0, \pm 1\}$. On the other hand, the sets $\left\{1,3^{i}+1\right\}$ are valid for all $i \geq 0$.

Higher-dimensional analogues

There is no reason to limit the theory of number systems to \mathbb{Z}. Consider this setup:

- \mathcal{O} is a \mathbb{Z}-order.
- $\alpha \in \mathcal{O}$ is nonzero.
- \mathcal{D} represents \mathcal{O} modulo α (we have $|\mathcal{D}|=|\operatorname{Norm}(\alpha)|<\infty)$.

Then we can define $T: \mathcal{O} \rightarrow \mathcal{O}: a \mapsto \frac{a-d_{a}}{\alpha}$, where $d_{a} \in \mathcal{D}$ has $a \equiv d_{a}$ $(\bmod \alpha)$.

Easy necessary conditions to have finite expansibility of all $a \in \mathcal{O}$:

- α and $\alpha-1$ must be non-units of \mathcal{O}
- α must be expanding, i.e., for all $\sigma: \mathcal{O} \hookrightarrow \mathbb{C}$ we have $|\sigma(\alpha)|>1$.

The periodic set

With this setup, we call $(\mathcal{O}, \alpha, \mathcal{D})$ a pre-number system.

Because α is expanding, the mapping T is almost a contraction on \mathcal{O}, and the unique finite subset $\mathcal{P} \subset \mathcal{O}$ that is invariant under T is called the periodic set of the pre-number system.

Theorem The periodic set of $(\mathbb{Z},-2,\{d, D\})$ is the arithmetic progression $\left\{\left\lceil\frac{2 d-D}{3}\right\rceil, \ldots,\left\lfloor\frac{2 D-d}{3}\right\rfloor\right\}$.

In higher dimensions, the geometric structure of the periodic set is quite complicated.

The tile

There is a continuous variant of the (discrete) periodic set, called the tile of the pre-number system, because it usually tiles $\mathcal{O} \otimes \mathbb{R}$.

For $(\mathbb{Z},-2,\{d, D\})$, it is the interval $\left[\frac{2 d-D}{3}, \frac{2 D-d}{3}\right]$.
In higher dimensions, these tiles usually have fractal boundary.

To prove a higher-dimensional analogue of the main Theorem, we must characterise the lattice points in the tile, and describe the action of T on them.

Work in progress

More-or-less-theorem Let α be an expanding algebraic integer of norm ± 2. Then up to finitely many exceptions, a digit set $\mathcal{D}=$ $\left\{d_{0}, d_{0}+\delta\right\}$ makes $(\mathbb{Z}[\alpha], \alpha, \mathcal{D})$ into a number system if and only if:
(i) $\delta \equiv 1(\bmod \alpha)$ and $\left(d_{0}, \alpha-1\right)=(1)$
(ii) there is a nontrivial zero expansion
(iii) δ is a product of prime divisors of $\alpha-1$ that are regular, totally split and lie over different primes of \mathbb{Z}

Note that for a given degree d, there are only finitely many expanding α of degree d and norm ± 2. A famous example is $\tau=\frac{-1+\sqrt{-7}}{2}$ satisfying $x^{2}+x+2$. The smallest nonmaximal order among them is generated by $x^{4}+x^{2}+4$ (Potiopa 1997). The smallest example with a nontrivial ideal class group is $x^{8}-x^{6}-x^{2}+2$ (CvdW 2009).

