An algorithm for solving

$$
\sum_{i=1}^{n} a_{i} x_{i}^{n}=b
$$

over finite fields

Christiaan van de Woestijne, Universiteit Leiden

Oberwolfach workshop on Finite Fields
7 December 2004

Surroundings

Currently known algorithms for solving equations over finite fields include:

- brute force search
- algorithms for factoring polynomials
- Shanks' algorithm for taking square (and higher) roots
- methods for multivariate equations based on the above
- Schoof's algorithm for taking square roots in prime fields

However, all of these are either probabilistic (barring a proof of GRH for some) or take more than polynomial time.

Overview: a tower of algorithms

(This is part of my PhD project with H. W. Lenstra, Jr.)
I. Computing field generators in multiplicative subgroups:
for $G \subseteq \mathbb{F}^{*}$, find $\alpha \in G$ such that $\mathbb{F}=\mathbb{F}_{p}(\alpha)$.
II. Writing field elements as sums of like powers:
given $b \in \mathbb{F}^{*}$, find $x_{1}, \ldots, x_{n} \in \mathbb{F}$ such that $b=\sum_{i=1}^{n} x_{i}^{n}$.
III. Finding representations by diagonal forms in many variables: given $a_{1}, \ldots, a_{n} \in \mathbb{F}^{*}$, and $b \in \mathbb{F}^{*}$, find $x_{1}, \ldots, x_{n} \in \mathbb{F}$ such that $b=\sum_{i=1}^{n} a_{i} x_{i}^{n}$.

Overview: building blocks

I. A multiplicative version of the primitive element theorem (using elementary linear algebra)
II. Selective root extraction (a generalisation of the Tonelli-Shanks algorithm)
III. Reducing the number of terms in a sum of like powers (a bisection-like idea)
IV. Dealing with coefficients other than 1 by means of the "trapezium algorithm" (an algorithmic version of an idea of Dem'yanov and Kneser)

It can be shown that...

- the set of sums of nth powers of elements, S_{n}, in \mathbb{F} is a subfield of \mathbb{F}.
- $S_{n}=\mathbb{F}$ iff \mathbb{F} can be generated over \mathbb{F}_{p} by an nth power in \mathbb{F}.
- if $S_{n} \neq \mathbb{F}$, we have $n^{2}>q$.
- if $S_{n}=\mathbb{F}$, then every equation of the form

$$
\sum_{i=1}^{n} a_{i} x_{i}^{n}=b
$$

for a_{1}, \ldots, a_{n} and b in \mathbb{F}^{*} is solvable.

The homogeneous variant $\sum_{i=0}^{n} a_{i} x_{i}^{n}=0$ is always solvable by the Chevalley-Warning theorem.

By comparison...

- the results from the last slide can be much improved if q is much larger than n^{2}. For example, if $q>n^{4}$, then every equation of the form

$$
a x^{n}+b y^{n}=c
$$

is solvable (Weil 1948).

- the algorithms I will present are not unpractical but probabilistic algorithms will probably do better if q is much larger than n.

Conventions

In this talk, the phrase "we can compute X " means:

"we know explicitly a deterministic polynomial time algorithm to compute $X^{\prime \prime}$.

The same goes for "we can decide Y ".

We will denote by \mathbb{F} a finite field of q elements and characteristic p, given by a polynomial f that is irreducible over the prime field \mathbb{F}_{p}.

Our algorithms take \mathbb{F} as input; thus the input size is about $\log q$, and our algorithms must finish in time polynomial in $\log q$.

Algorithm I: a generator in a given subgroup (1)

Theorem. Let $G \subseteq \mathbb{F}^{*}$ be a multiplicative subgroup; we can compute $\beta \in G$ such that β generates \mathbb{F} over its prime field, or decide that no such α exists.

Main (in fact only) example: $G=\mathbb{F}^{* n}$ for some positive integer n.

Proof. Let $n=\left[\mathbb{F}^{*}: G\right]$ and let α be the given generator of \mathbb{F}.

If $K_{1}=\mathbb{F}_{p}\left(\gamma_{1}^{n}\right)$ and $K_{2}=\mathbb{F}_{p}\left(\gamma_{2}^{n}\right)$ are subfields of \mathbb{F}, we can compute $\gamma \in\left\langle\gamma_{1}, \gamma_{2}\right\rangle$ such that

$$
\gamma^{n} \text { generates } \mathbb{F}_{p}\left(\gamma_{1}^{n}, \gamma_{2}^{n}\right) \text { over } \mathbb{F}_{p}
$$

by means of a elementary linear algebra.

Building block I: A "multiplicative" primitive element theorem

Lemma. Let L / K be a cyclic extension of fields of degree d, and let b_{1}, \ldots, b_{d} be a K-basis for L. Then at least $\varphi(d)$ of the b_{i} generate L as a field over K.

Now suppose $\alpha \in L$ has degree e over K and β has degree f. The degree of β over $K(\alpha)$ is given by $g=\operatorname{lcm}(e, f) / e=f / \operatorname{gcd}(e, f)$, so a basis of $K(\alpha, \beta)$ is given by

$$
\left(\alpha^{i} \beta^{j} \mid i=0, \ldots, e-1, j=0, \ldots, g-1\right) .
$$

One of these elements generates $K(\alpha, \beta)$ over K !
Obviously, by induction we may extend this result to systems of more than two generators.

Algorithm I: a generator in a given subgroup (2)

Proof (ctd.) We start induction with $K=\mathbb{F}_{p}=\mathbb{F}_{p}\left(1^{n}\right)$. Assume now we have $K=\mathbb{F}_{p}\left(\gamma_{1}^{n}\right)$. If $|K| \leq n$, we find $\gamma_{2} \in \mathbb{F}^{*}$ with $\gamma_{2}^{n} \notin K$.

If no such γ_{2} exists, the algorithm fails (and rightly so)!

If $|K|>n$, then at least one of $\left(\alpha+c_{i}\right)^{n}$, where c_{0}, \ldots, c_{n} are distinct elements of K, is not in K; now put $\gamma_{2}=\alpha+c_{i}$. (Recall that $\mathbb{F}=\mathbb{F}_{p}(\alpha)$.)

Now in either case, adjoin γ_{2}^{n} to K and compute γ with $K=\mathbb{F}_{p}\left(\gamma^{n}\right)$, using Building block I.

Building block II: selective root extraction

Theorem. If $a_{0}, a_{1}, \ldots, a_{n}$ are in \mathbb{F}^{*}, then we can compute some $\beta \in \mathbb{F}^{*}$ such that, for some i, j with $0 \leq i<j \leq n$, we have

$$
a_{i} / a_{j}=\beta^{n} .
$$

Proof. Let $H=\left\langle a_{0}, \ldots, a_{n}\right\rangle$. The a_{i} cover the cosets of H modulo H^{n}, so there exist i and j such that $a_{i} / a_{j} \in H^{n}$.

We can factor n into primes ℓ and use this to compute generators γ_{ℓ} for the ℓ-parts of H. Now, we compute an nth root β of a_{i} / a_{j} using these generators γ_{ℓ}, by means of the Tonelli-Shanks algorithm.

Algorithm II: sums of like powers

Theorem. Let b be in \mathbb{F}^{*} and n a positive integer. We can decide if b is in S_{n} and if so, we can compute x_{1}, \ldots, x_{n} such that $b=\sum_{i=1}^{n} x_{i}^{n}$.

Proof. If $n^{2} \geq q$, we have enough time to enumerate all possibilities.

If $n^{2}<q$, then $S_{n}=\mathbb{F}$, so the answer is yes. We use Algorithm I to compute $\gamma \in \mathbb{F}$ such that γ^{n} generates \mathbb{F} over \mathbb{F}_{p}; this gives us

$$
b=\sum_{i=0}^{\left[\mathbb{F}: \mathbb{F}_{p}\right]-1} b_{i} \gamma^{n i}
$$

This is a sum of nth powers with at most $(p-1) \cdot\left[\mathbb{F}: \mathbb{F}_{p}\right]$ terms!
Now use Building blocks II and III to come down to just n terms.

Building block III: reducing sums of like
 powers

Theorem. Given y_{1}, \ldots, y_{N} and $b \in \mathbb{F}^{*}$ with $\sum y_{i}^{n}=b$, we can compute $x_{1}, \ldots, x_{n} \in \mathbb{F}^{*}$ such that $\sum_{i=1}^{n} x_{i}^{n}=b$.

Proof. Divide y_{1}, \ldots, y_{N} into $n+1$ roughly equal groups G_{0}, \ldots, G_{n}. Let S_{i} denote the sum of all terms in the first $i+1$ groups.

If one of the S_{i} is zero, we discard all terms in the first $i+1$ groups. Otherwise, we use selective root extraction to compute $\beta \in \mathbb{F}^{*}$ with

$$
S_{i} / S_{j}=\beta^{n} .
$$

(assume $i>j$). This means we can discard the groups G_{j+1} up to G_{i}, provided we multiply all terms in the first $i+1$ groups by β. This trick is applicable as long as we have at least $n+1$ terms.

Algorithm III: representations by diagonal forms

Theorem. Let b be in \mathbb{F}^{*} and n a positive integer. For any $a_{1}, \ldots, a_{n} \in \mathbb{F}^{*}$ we can decide if the equation

$$
b=\sum_{i=1}^{n} a_{i} x_{i}^{n}
$$

is solvable, and if so, we can compute a solution.
Proof. Again, if $n^{2} \geq q$, we can just enumerate all possibilities.
If $n^{2}<q$, there is a solution. Write $a_{0}=-b$. We use now Algorithm II to write the elements b / a_{i} (for $i=1, \ldots, n$) as sums of nth powers, so we get

$$
-a_{i} \sum_{j} y_{i j}^{n}=-b=a_{0} \cdot 1^{n} .
$$

Building block IV: the trapezium algorithm (1)

We now have a system of the form

$$
\left\{\begin{aligned}
-a_{0}\left(y_{0,1}^{n}+\ldots+y_{0, h_{0}}^{n}\right)= & 0 \\
-a_{1}\left(y_{1,1}^{n}+\ldots+y_{1, h_{1}}^{n}\right)= & a_{0} x_{1,0}^{n} \\
\vdots & \vdots \\
-a_{n}\left(y_{n, 1}^{n}+\ldots+y_{n, h_{n}}^{n}\right) & =a_{0} x_{n, 0}^{n}+\ldots+a_{n-1} x_{n, n-1}^{n}
\end{aligned}\right.
$$

Recall that we wrote $a_{0}=-b$. If $h_{i}=0$ for some $i \geq 1$, we are done!

We try to lower the h_{i} by bringing the last term $a_{i} y_{i, h_{i}}^{n}$ to the other side. We get the sequence

$$
\left(a_{0} y_{0, h_{0}}^{n}, a_{0} x_{1,0}^{n}+a_{1} y_{1, h_{1}}^{n}, \ldots, a_{0} x_{n, 0}^{n}+\ldots+a_{n-1} x_{n, n-1}^{n}+a_{n} y_{n, h_{n}}^{n}\right) .
$$

Building block IV: the trapezium algorithm (2)

The sequence $\left(a_{0} y_{0, h_{0}}, a_{0} x_{1,0}^{n}+a_{1} y_{1, h_{1}}^{n}, \ldots, a_{0} x_{n, 0}^{n}+\ldots+a_{n-1} x_{n, n-1}^{n}+a_{n} y_{n, h_{n}}^{n}\right)$. has $n+1$ elements, say c_{0}, \ldots, c_{n}. If one is zero, we are done!

Otherwise, use selective root extraction to compute $\beta \in \mathbb{F}^{*}$ with

$$
\beta^{n}=c_{i} / c_{j}, \quad \text { i.e. } \quad c_{i}=\beta^{n} c_{j}
$$

(assume $i>j$).
Replace now the i th term in the sequence by β^{n} times the j th term, and we can reduce h_{i} by one!

Thus, in at most n^{2} steps, we will get one of the h_{i} down to zero.

Applications (for $n=2$)

If $n=2$ and the characteristic of \mathbb{F} is odd, then every form is diagonal. Furthermore, in characteristic 2, zeros of quadratic forms can be found by means of linear algebra.
Corollary. Given a quadric hypersurface over a finite field \mathbb{F}, we can compute a rational point on it.
Corollary. Given two regular quadratic spaces V and W over a finite field \mathbb{F} (char. $\neq 2$), such that $\operatorname{dim} V \geq \operatorname{dim} W+1$, we can compute an isometric embedding of W into V.
On the other hand, if $\operatorname{dim} V=\operatorname{dim} W$, we can reduce the problem of finding an isometry from V to W to the computation of just one square root in \mathbb{F}.

More applications (for $n=2$)

Corollary. (Bumby) Given a prime p, we can compute integers x_{1}, \ldots, x_{4} such that $p=x^{2}+y^{2}+z^{2}+w^{2}$.
This works also for any other Euclidean quaternion orders.
Corollary. Given a central simple algebra A of degree 2 over a finite field \mathbb{F}, we can compute an explicit isomorphism from A to a 2×2-matrix algebra over \mathbb{F}.

