An algorithm for solving

$$\sum_{i=1}^{n} a_i x_i^n = b$$

over finite fields

Christiaan van de Woestijne, Universiteit Leiden

Oberwolfach workshop on Finite Fields 7 December 2004

Surroundings

Currently known algorithms for solving equations over finite fields include:

- brute force search
- algorithms for factoring polynomials
- Shanks' algorithm for taking square (and higher) roots
- methods for multivariate equations based on the above
- Schoof's algorithm for taking square roots in prime fields

However, all of these are either probabilistic (barring a proof of GRH for some) or take more than polynomial time.

Overview: a tower of algorithms

(This is part of my PhD project with H. W. Lenstra, Jr.)

- I. Computing field generators in multiplicative subgroups:
 - for $G \subseteq \mathbb{F}^*$, find $\alpha \in G$ such that $\mathbb{F} = \mathbb{F}_p(\alpha)$.
- II. Writing field elements as sums of like powers:

given
$$b \in \mathbb{F}^*$$
, find $x_1, \ldots, x_n \in \mathbb{F}$ such that $b = \sum_{i=1}^n x_i^n$.

III. Finding representations by diagonal forms in many variables:

given
$$a_1,\ldots,a_n\in\mathbb{F}^*$$
, and $b\in\mathbb{F}^*$, find $x_1,\ldots,x_n\in\mathbb{F}$ such that

$$b = \sum_{i=1}^{n} a_i x_i^n.$$

Overview: building blocks

- I. A multiplicative version of the primitive element theorem (using elementary linear algebra)
- II. Selective root extraction (a generalisation of the Tonelli-Shanks algorithm)
- III. Reducing the number of terms in a sum of like powers (a bisection-like idea)
- IV. Dealing with coefficients other than 1 by means of the "trapezium algorithm" (an algorithmic version of an idea of Dem'yanov and Kneser)

It can be shown that...

- the set of sums of nth powers of elements, S_n , in \mathbb{F} is a subfield of \mathbb{F} .
- $S_n = \mathbb{F}$ iff \mathbb{F} can be generated over \mathbb{F}_p by an nth power in \mathbb{F} .
- if $S_n \neq \mathbb{F}$, we have $n^2 > q$.
- if $S_n = \mathbb{F}$, then every equation of the form

$$\sum_{i=1}^{n} a_i x_i^n = b$$

for a_1, \ldots, a_n and b in \mathbb{F}^* is solvable.

The homogeneous variant $\sum_{i=0}^{n} a_i x_i^n = 0$ is always solvable by the Chevalley-Warning theorem.

By comparison...

• the results from the last slide can be much improved if q is much larger than n^2 . For example, if $q>n^4$, then every equation of the form

$$ax^n + by^n = c$$

is solvable (Weil 1948).

• the algorithms I will present are not unpractical but probabilistic algorithms will probably do better if q is much larger than n.

Conventions

In this talk, the phrase "we can compute X" means:

"we know explicitly a deterministic polynomial time algorithm to compute X".

The same goes for "we can decide Y".

We will denote by \mathbb{F} a finite field of q elements and characteristic p, given by a polynomial f that is irreducible over the prime field \mathbb{F}_p .

Our algorithms take \mathbb{F} as input; thus the input size is about $\log q$, and our algorithms must finish in time polynomial in $\log q$.

Algorithm I: a generator in a given subgroup (1)

Theorem. Let $G \subseteq \mathbb{F}^*$ be a multiplicative subgroup; we can compute $\beta \in G$ such that β generates \mathbb{F} over its prime field, or decide that no such α exists.

Main (in fact only) example: $G = \mathbb{F}^{*n}$ for some positive integer n.

Proof. Let $n = [\mathbb{F}^* : G]$ and let α be the given generator of \mathbb{F} .

If $K_1 = \mathbb{F}_p(\gamma_1^n)$ and $K_2 = \mathbb{F}_p(\gamma_2^n)$ are subfields of \mathbb{F} , we can compute $\gamma \in \langle \gamma_1, \gamma_2 \rangle$ such that

$$\gamma^n$$
 generates $\mathbb{F}_p(\gamma_1^n, \gamma_2^n)$ over \mathbb{F}_p

by means of a elementary linear algebra.

Building block I: A "multiplicative" primitive element theorem

Lemma. Let L/K be a cyclic extension of fields of degree d, and let b_1, \ldots, b_d be a K-basis for L. Then at least $\varphi(d)$ of the b_i generate L as a field over K.

Now suppose $\alpha \in L$ has degree e over K and β has degree f. The degree of β over $K(\alpha)$ is given by $g = \text{lcm}(e,f)/e = f/\gcd(e,f)$, so a basis of $K(\alpha,\beta)$ is given by

$$(\alpha^i \beta^j \mid i = 0, \dots, e - 1, j = 0, \dots, g - 1).$$

One of these elements generates $K(\alpha, \beta)$ over K!

Obviously, by induction we may extend this result to systems of more than two generators.

Algorithm I: a generator in a given subgroup (2)

Proof (ctd.) We start induction with $K = \mathbb{F}_p = \mathbb{F}_p(1^n)$. Assume now we have $K = \mathbb{F}_p(\gamma_1^n)$. If $|K| \leq n$, we find $\gamma_2 \in \mathbb{F}^*$ with $\gamma_2^n \notin K$.

If no such γ_2 exists, the algorithm fails (and rightly so)!

If |K| > n, then at least one of $(\alpha + c_i)^n$, where c_0, \ldots, c_n are distinct elements of K, is not in K; now put $\gamma_2 = \alpha + c_i$. (Recall that $\mathbb{F} = \mathbb{F}_p(\alpha)$.)

Now in either case, adjoin γ_2^n to K and compute γ with $K = \mathbb{F}_p(\gamma^n)$, using Building block I.

Building block II: selective root extraction

Theorem. If a_0, a_1, \ldots, a_n are in \mathbb{F}^* , then we can compute some $\beta \in \mathbb{F}^*$ such that, for some i,j with $0 \le i < j \le n$, we have

$$a_i/a_j = \beta^n$$
.

Proof. Let $H = \langle a_0, \dots, a_n \rangle$. The a_i cover the cosets of H modulo H^n , so there exist i and j such that $a_i/a_j \in H^n$.

We can factor n into primes ℓ and use this to compute generators γ_ℓ for the ℓ -parts of H. Now, we compute an nth root β of a_i/a_j using these generators γ_ℓ , by means of the Tonelli-Shanks algorithm.

Algorithm II: sums of like powers

Theorem. Let b be in \mathbb{F}^* and n a positive integer. We can decide if b is in S_n and if so, we can compute x_1, \ldots, x_n such that $b = \sum_{i=1}^n x_i^n$.

Proof. If $n^2 \ge q$, we have enough time to enumerate all possibilities.

If $n^2 < q$, then $S_n = \mathbb{F}$, so the answer is yes. We use Algorithm I to compute $\gamma \in \mathbb{F}$ such that γ^n generates \mathbb{F} over \mathbb{F}_p ; this gives us

$$b = \sum_{i=0}^{[\mathbb{F}:\mathbb{F}_p]-1} b_i \gamma^{ni}.$$

This is a sum of nth powers with at most $(p-1) \cdot [\mathbb{F} : \mathbb{F}_p]$ terms!

Now use Building blocks II and III to come down to just n terms. \square

Building block III: reducing sums of like powers

Theorem. Given y_1, \ldots, y_N and $b \in \mathbb{F}^*$ with $\sum y_i^n = b$, we can compute $x_1, \ldots, x_n \in \mathbb{F}^*$ such that $\sum_{i=1}^n x_i^n = b$.

Proof. Divide y_1, \ldots, y_N into n+1 roughly equal groups G_0, \ldots, G_n . Let S_i denote the sum of all terms in the first i+1 groups.

If one of the S_i is zero, we discard all terms in the first i+1 groups. Otherwise, we use selective root extraction to compute $\beta \in \mathbb{F}^*$ with

$$S_i/S_j = \beta^n$$
.

(assume i>j). This means we can discard the groups G_{j+1} up to G_i , provided we multiply all terms in the first i+1 groups by β . This trick is applicable as long as we have at least n+1 terms. \Box

Algorithm III: representations by diagonal forms

Theorem. Let b be in \mathbb{F}^* and n a positive integer. For any $a_1, \ldots, a_n \in \mathbb{F}^*$ we can decide if the equation

$$b = \sum_{i=1}^{n} a_i x_i^n$$

is solvable, and if so, we can compute a solution.

Proof. Again, if $n^2 \ge q$, we can just enumerate all possibilities.

If $n^2 < q$, there is a solution. Write $a_0 = -b$. We use now Algorithm II to write the elements b/a_i (for i = 1, ..., n) as sums of nth powers, so we get

$$-a_i \sum_{j} y_{ij}^n = -b = a_0 \cdot 1^n.$$

Building block IV: the trapezium algorithm (1)

We now have a system of the form

$$\begin{cases}
-a_0(y_{0,1}^n + \dots + y_{0,h_0}^n) = 0 \\
-a_1(y_{1,1}^n + \dots + y_{1,h_1}^n) = a_0 x_{1,0}^n \\
\vdots \\
-a_n(y_{n,1}^n + \dots + y_{n,h_n}^n) = a_0 x_{n,0}^n + \dots + a_{n-1} x_{n,n-1}^n
\end{cases}$$

Recall that we wrote $a_0 = -b$. If $h_i = 0$ for some $i \ge 1$, we are done!

We try to lower the h_i by bringing the last term $a_i y_{i,h_i}^n$ to the other side. We get the sequence

$$\left(a_0y_{0,h_0}^n, a_0x_{1,0}^n + a_1y_{1,h_1}^n, \dots, a_0x_{n,0}^n + \dots + a_{n-1}x_{n,n-1}^n + a_ny_{n,h_n}^n\right).$$

Building block IV: the trapezium algorithm (2)

The sequence

$$\left(a_0y_{0,h_0},a_0x_{1,0}^n+a_1y_{1,h_1}^n,\ldots,a_0x_{n,0}^n+\ldots+a_{n-1}x_{n,n-1}^n+a_ny_{n,h_n}^n\right).$$
 has $n+1$ elements, say c_0,\ldots,c_n . If one is zero, we are done!

Otherwise, use selective root extraction to compute $\beta \in \mathbb{F}^*$ with

$$\beta^n = c_i/c_j$$
, i.e. $c_i = \beta^n c_j$

(assume i > j).

Replace now the *i*th term in the sequence by β^n times the *j*th term, and we can reduce h_i by one!

Thus, in at most n^2 steps, we will get one of the h_i down to zero. \Box

Applications (for n = 2)

If n=2 and the characteristic of \mathbb{F} is odd, then every form is diagonal. Furthermore, in characteristic 2, zeros of quadratic forms can be found by means of linear algebra.

Corollary. Given a quadric hypersurface over a finite field \mathbb{F} , we can compute a rational point on it.

Corollary. Given two regular quadratic spaces V and W over a finite field \mathbb{F} (char. \neq 2), such that dim $V \geq$ dim W + 1, we can compute an isometric embedding of W into V.

On the other hand, if dim $V = \dim W$, we can reduce the problem of finding an isometry from V to W to the computation of just one square root in \mathbb{F} .

More applications (for n = 2)

Corollary. (Bumby) Given a prime p, we can compute integers x_1, \ldots, x_4 such that $p = x^2 + y^2 + z^2 + w^2$.

This works also for any other Euclidean quaternion orders.

Corollary. Given a central simple algebra A of degree 2 over a finite field \mathbb{F} , we can compute an explicit isomorphism from A to a 2×2 -matrix algebra over \mathbb{F} .