Algebraic aspects of number systems

Christiaan van de Woestijne Institut für Mathematik B
Technische Universität Graz, Austria

Supported by the FWF, project S9606

Journées de Numération (cítací dni)
Prague, 25-30 May 2008

Definitions

We define a pre-number system as a triple (V, ϕ, \mathcal{D}), where

- V is a finite free \mathbb{Z}-module;
- ϕ is an expanding endomorphism of V;
- \mathcal{D} is a system of representatives of V modulo $\phi(V)$.

A pre-number system (V, ϕ, \mathcal{D}) is a number system if there exist finite expansions

$$
a=\sum_{i=0}^{\ell} \phi^{i}\left(d_{i}\right) \quad\left(d_{i} \in \mathcal{D}\right)
$$

for all $a \in V$.

We are ultimately interested in the classification of all number systems.

Examples

- $(\mathbb{Z}, b,\{0, \ldots,|b|-1\})$ is a pre-number system whenever $|b| \geq 2$, and a number system if and only if $b \leq-2$.
- $\left(\mathbb{Z}[i], b,\left\{0, \ldots,|b|^{2}-1\right\}\right)$ is a pre-number system whenever $|b|>$ 1 , and a number system if and only if $b=-a \pm \mathrm{i}$, for some $a \in \mathbb{N}$.
- ($\mathbb{Z},-2,\{d, D\})$ is a number system if and only if ... (answer at end of talk)
- $(\mathbb{Z}[X] /((X-5)(X-7)), X,\{1,-1,3,-3,5, X, X-2,-X+2$, $X-4,-X+4, X-6,-X+6, X-8,-X+8,-X+10,2 X-7$, $2 X-9,-2 X+9,2 X-11,-2 X+11,2 X-13,-2 X+13$, $-2 X+15,3 X-14,3 X-16,-3 X+16,-3 X+18,3 X-18$, $-3 X+20,4 X-21,4 X-23,-4 X+23,-4 X+25,5 X-28$, $-5 x+30\}$) is a number system (recall from last year?)

Example: the odd digits

Assume $V=\mathbb{Z}$ and ϕ is multiplication by some integer b. Let b be odd, $|b| \geq 3$, and let

$$
\mathcal{D}_{\text {odd }}:=\{-|b|+2,-|b|+4, \ldots,-1,1, \ldots,|b|-2, b\} .
$$

This is a valid digit set for all odd b.

For $b=3$: it's $\{-1,1,3\}$. We get $0=3 \cdot 1+(-1) \cdot 3$.

a	$(a)_{3, \text { odd }}$						
0	$\overline{1} 3$	5	$1 \overline{1} \overline{1}$	-1	$\overline{1}$	-6	$\overline{1} 133$
1	1	6	13	-2	$\overline{1} 1$	-7	$\overline{1} 1 \overline{1}$
2	$1 \overline{1}$	7	$1 \overline{1} 1$	-3	$\overline{1} 13$	-8	$\overline{1} 131$
3	3	8	$3 \overline{1}$	-4	$\overline{11}$	-9	$\overline{11} 3$
4	11	9	$1 \overline{1} 3$	-5	$\overline{1} 11$	-10	$\overline{1} 13 \overline{1}$

The dynamic mapping

Define functions

$$
\begin{aligned}
& d: V \rightarrow \mathcal{D}: d(a) \text { is the unique } d \in \mathcal{D} \text { with } a-d \in \phi(V) ; \\
& T: V \rightarrow V: T(a)=\phi^{-1}(a-d(a)) .
\end{aligned}
$$

We call T the dynamic mapping of (V, ϕ, \mathcal{D}).
Theorem (V, ϕ, \mathcal{D}) is a number system if and only for all $v \in V$ there exists $n \geq 0$ with $T^{n}(v)=0$.

Recall that a pre-number system has a finite attractor $\mathcal{A} \subseteq V$ with the properties

- for all $a \in V$ we have $T^{n}(a) \in \mathcal{A}$ if n is large enough.
- T is bijective on \mathcal{A}.

Theorem (V, ϕ, \mathcal{D}) is a number system if and only if the attractor contains 0 , and consists exactly of one cycle under T.

The easy case

Theorem (Kovács-Germán-vdW) Given (V, ϕ), let \mathcal{D} be a set of shortest (nonzero) digits modulo ϕ, with respect to a norm $\|\cdot\|$ on V that satisfies $\left\|\phi^{-1}\right\|<\frac{1}{2}$. Then (V, ϕ, \mathcal{D}) is a number system.

Such a norm exists when $|\alpha|>2$ for all eigenvalues α of ϕ.

Theorem (Curry, others?) Let $n \geq 1$, let ϕ be an endomorphism of \mathbb{Z}^{n}, and let

$$
\mathcal{D}=\phi\left(\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}\right) \cap \mathbb{Z}^{n}
$$

If we have $|\alpha|>2$ for all singular values of ϕ, then $\left(\mathbb{Z}^{n}, \phi, \mathcal{D}\right)$ is a number system.

Algebra

A finite free \mathbb{Z}-module V with endomorphism ϕ is automatically a module over the ring $\mathbb{Z}[\phi] \subseteq \mathrm{End}_{\mathbb{Z}}(V)$. We have

$$
\mathbb{Z}[\phi] \cong \mathbb{Z}[X] /\left(f_{\min }(\phi)\right)
$$

If $\operatorname{dim} V=\operatorname{dim} \mathbb{Z}[\phi]=\operatorname{deg}\left(f_{\min }(\phi)\right)$, then V is isomorphic, as a $\mathbb{Z}[\phi]$-module, to an ideal of $\mathbb{Z}[\phi]$.

Theorem (Jordan-Zassenhaus) If $f \in \mathbb{Z}[X]$ is squarefree, then the number of isomorphism classes of ideals of $\mathbb{Z}[X] /(f)$ is finite.

It is important to consider also the classes of noninvertible ideals!

Algebra (2)

Example: let $R=\mathbb{Z}[\sqrt{5}]$. The maximal order $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ is isomorphic to the non-principal ideal $I_{2}=(2,1+\sqrt{5})$ of R ! Ugly: $N\left(I_{2}\right)=2$, but $N\left(I_{2}^{2}\right)=8!!$

The matrix of multiplication by $\sqrt{5}$ on I_{2} is $M=\left[\begin{array}{cc}-1 & 2 \\ 2 & 1\end{array}\right]$. It follows that this matrix is not similar over \mathbb{Z} to the companion matrix of $X^{2}-5$, although it has the same characteristic polynomial.

The singular values of M also equal to $\pm \sqrt{5}$, so by Curry's theorem, a valid digit set for basis M on \mathbb{Z}^{2} is given by $\left(M\left[-\frac{1}{2}, \frac{1}{2}\right)^{2}\right) \cap \mathbb{Z}^{2}=$ $\{(\pm 1,0),(0, \pm 1),(0,0)\}$.

It follows that $\{0,2,-2,1+\sqrt{5},-1-\sqrt{5}\}$ is a valid digit set for basis $\sqrt{5}$ on I_{2}. The same digits divided by 2 form a valid digit set for $\sqrt{5}$ on the maximal order.

Algebra (3)

If $\operatorname{dim} \mathbb{Z}[\phi]<\operatorname{dim} V$, then things become complicated. Sometimes, we have a direct sum decomposition:

- if ϕ is the identity, then $\mathbb{Z}[\phi] \cong \mathbb{Z}$, and we have $V \cong \mathbb{Z}^{n}$ as a \mathbb{Z}-module.
- if V is the integral quaternions $\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k$ and ϕ is (left) multiplication by i, then $V \cong \mathbb{Z}[i] \oplus \mathbb{Z}[i] j$.

However, V may be indecomposable as a $\mathbb{Z}[\phi]$-module.

Theorem (Heller-Reiner-Dade) If p is a prime and $f=X^{p^{i}}-1$, with $i \geq 3$, then there exist infinitely many isomorphism classes of indecomposable modules over the ring $\mathbb{Z}[X] /(f)$.

Tiles and translation

The tile of the pre-number system (V, ϕ, \mathcal{D}) is

$$
\mathcal{T}=\left\{\sum_{i=1}^{\infty} \phi^{-i}\left(d_{i}\right): d_{i} \in \mathcal{D}\right\} .
$$

The set \mathcal{T} covers $V \otimes \mathbb{R}$, with tiling lattice Λ, which is the $\mathbb{Z}[\phi]$ submodule of V generated by $\mathcal{D}-\mathcal{D}$, the differences of the digits. Translation of the digit set just induces a translation of \mathcal{T}; the attractor \mathcal{A} is contained in $-\mathcal{T}$. This provides an easy proof of

Theorem. Given a pre-number system (V, ϕ, \mathcal{D}), for each $t \in V$, let $\mathcal{D}_{t}=\{d+t: d \in \mathcal{D}\}$. Then there are only finitely many $t \in V$ such that $\left(V, \phi, \mathcal{D}_{t}\right)$ is a number system.

Another method shows that we can leave $0 \in \mathcal{D}$ in place, and obtain the same conclusion.

n-fold pre-number systems

Let (V, ϕ, \mathcal{D}) be a pre-number system with attractor \mathcal{A}. For every positive integer n, define

$$
\mathcal{D}^{n}=\left\{\sum_{i=0}^{n-1} \phi^{i}\left(d_{i}\right): d_{i} \in \mathcal{D}\right\}
$$

the set of all length- n expansions on base ϕ with digits in \mathcal{D}. Then $\left(V, \phi^{n}, \mathcal{D}^{n}\right)$ is again a pre-number system, called the n-fold prenumber system of (V, ϕ, \mathcal{D}), and we have

- \mathcal{A}^{n}, the attractor of $\left(V, \phi^{n}, \mathcal{D}^{n}\right)$, is equal to \mathcal{A}.
- ($V, \phi^{n}, \mathcal{D}^{n}$) is a number system if and only if (V, ϕ, \mathcal{D}) is a number system, and $\operatorname{gcd}(n,|\mathcal{A}|)=1$.

This theorem is very useful for the computation of attractors, since the bounds on the size of \mathcal{A} derived from \mathcal{D}^{n} are often smaller than those derived from \mathcal{D}.

n-fold pre-number systems (2)

Theorem (folklore) Let $\|\cdot\|$ be a norm on $V \otimes \mathbb{R}$, and let

$$
S=\left\{v \in V:\|v\| \leq \max _{d \in \mathcal{D}}\|d\| \frac{\left\|\phi^{-1}\right\|}{1-\left\|\phi^{-1}\right\|}\right\}
$$

then the attractor of (V, ϕ, \mathcal{D}) is contained in S.

Example: let $V=\mathbb{Z}[i]$, with the complex norm $\|\cdot\|$, and let ϕ be multiplication by $b=-1+i$. We let $\mathcal{D}=\{0,1,2,3\}$, and compute

$$
L_{n}=\frac{\max _{d \in \mathcal{D}^{n}}\|d\|}{\|b\|^{n}-1}
$$

for $n=1,2, \ldots$:

n	1	2	3	4	5	6	7	8
L_{n}	7.24	4.24	3.67	3.61	3.28	3.46	3.32	3.22

Of course, the computation of L_{n} takes exponential time in n.

n-fold pre-number systems (3)

Assume $V=\mathbb{Z}$.

Theorem (Matula 1982) Let $k \leq d \leq K$ for all $d \in \mathcal{D}$, and let $a \in \mathcal{A}$. Then

$$
\left\{\begin{array}{cl}
\frac{-K}{b-1} \leq a \leq \frac{-k}{b-1} & \text { if } b>0 \\
\frac{-k b-K}{b^{2}-1} \leq a \leq \frac{-K b-k}{b^{2}-1} & \text { if } b<0
\end{array}\right.
$$

One should compare these bounds with the generic $|a| \leq \frac{\max |d|}{|b|-1}$.
The proof uses the twofold number system, in case $b<0$, to reduce to the case $b>0$.

Infinitely many digit sets in \mathbb{Z}

Question: can one shift just one digit to obtain other good digit sets?

Answer: under all kinds of technical assumptions, Yes.

Theorem (A generalisation of Matula 1982 and Kovács and Pethő 1983) Let $(\mathbb{Z}, b, \mathcal{D})$ be a number system, where $B=|b| \geq 3$ and where $|d| \leq B$ for all $d \in \mathcal{D}$. Fix some $d \in \mathcal{D}$ and some integer u with $|u| \leq B-1$; if $0 \notin \mathcal{D}$, assume $|u| \leq B-2$. Let \mathcal{B} be the set of digits in \mathcal{D} that occur in the expansions of $0, u+1, u$, and $u-1$. If $d \notin \mathcal{B}$, then we may replace d in \mathcal{D} by $\tilde{d}=d-u b^{k}$, for any $k \geq 1$, without affecting the number system property.

Note that $|\mathcal{B}| \leq 6$ if $b>0$ and $|\mathcal{B}| \leq 8$ if $b<0$. For $|b|=3$, the Theorem does not work.

Examples of infinite families

We write $B=|b|$. For $B=3$ (Matula): $\left\{0,1,2-3^{k}\right\}$ when $b=3$, and $\left\{0,1,2-9^{k}\right\}$ when $b=-3$. Can take $\tilde{d}=d-u b^{k}$, for $d \notin \mathcal{B}$.

b	\mathcal{D}	u	\mathcal{B}
≥ 4	$\{-1,0,1, \ldots, b-2\}$	1	$\{0,1,2\}$
≤-4	$\{0,1, \ldots, B-1\}$	-1	$\{-1,0, b-2\}$
	$\{1$	$\{0,1,2\}$	
	$\{1,2, \ldots, B\}$	-1	$\{0,1, B-2, B-1\}$
	1	$\{1,2, B\}$	
≥ 5 odd	$\{-B, 1,2, \ldots, B-1\}$	-1	$\{1, B-2, B-1, B\}$
odd digits	1	$\{1,2, B-1,-B\}$	
≤-5 odd	odd digits	1	$\{-1,1,-b+2, b\}$
		-1	$\{-1, b-2, b\}$
	1	$\{-1,1, b+2, b\}$	
		$\{1,-1,-3, B-4, B-2\}$	

The proof

Let $\tilde{\mathcal{A}}$ be the attractor for base b and digit set $\tilde{\mathcal{D}}$, which is \mathcal{D} with d replaced by \tilde{d}.

Lemma If $\tilde{d}=d-u b^{k}$, then the expansions of all $a \in \tilde{\mathcal{A}}$ on \mathcal{D} have length bounded by $k+2$ or so.

Now we construct a finite state transducer that replaces all occurrences of d by \tilde{d}, and keeps the length under $k+2$ or so.

Lemma If $d \notin \mathcal{B}$, then the finite state transducer always terminates on a word containing only \tilde{d} and no d.

Base -2

In the figure, we see all valid digit sets for $b=-2$ with both digits less than 200 in absolute value. What is the structure of this set?

Base -2

Theorem Let $d, D \in \mathbb{Z}$, with $d<D$. Then $(\mathbb{Z},-2,\{d, D\})$ is a number system if and only if

1. one of $\{d, D\}$ is even and one is odd;
2. neither of d and D is divisible by 3, except when the even digit is 0 ;
3. we have $2 d \leq D$ and $2 D \geq d$;
4. $D-d=3^{i}$ for some $i \geq 0$.

Example Thus, $\left\{1,3^{k}+1\right\}$ is valid for $b=-2$, for all $k \geq 0$.

The only valid digit sets for $b=-2$ that have 0 are $\{0,1\}$ and $\{0,-1\}$.

The proof (1)

It is clearly necessary that we have one even and one odd digit. Also, each digit d divisible by 3 induces a 1 -cycle $d / 3$, so this is only admissible for $d=0$.

Lemma When $|b|=2$, the attractor \mathcal{A} is an interval.

Lemma Let $d<D$ be digits for $b=-2$. Then

$$
\mathcal{A}=\left\{\left\lceil\frac{2 d-D}{3}\right\rceil, \ldots,\left\lfloor\frac{2 D-d}{3}\right\rfloor\right\} .
$$

In other words, Matula's bounds are sharp for $b=-2$.

Lemma We have $0 \in \mathcal{A}$ if and only if $2 d \leq D$ and $2 D \geq d$.

The proof (2)

It remains to determine the cycle structure of \mathcal{A}. Let $\mathcal{D}=\left\{d_{0}, d_{1}\right\}$, and let $\delta=d_{0}-d_{1}$. If a starts a cycle of length ℓ, then

$$
\left(1-b^{\ell}\right) a=\sum_{i=0}^{\ell-1} d_{i} b^{i}=d_{0} \frac{b^{\ell}-1}{b-1}-\delta \sum_{i=0}^{\ell-1} \varepsilon_{i} b^{i}
$$

for some $\varepsilon \in\{0,1\}$. With $b=-2$, we find

$$
3 \delta \text { divides }\left(d_{0}-3 a\right)\left((-2)^{\ell}-1\right)
$$

Because \mathcal{A} is an interval of length $|\delta|$, except in some small cases we can assume that $\operatorname{gcd}\left(3 \delta, d_{0}-3 a\right)=1$! Now we do some number theory to obtain

Lemma There is exactly one cycle in \mathcal{A} if and only if $|\delta|=3^{i}$ for some $i \geq 0$, and $3 \nmid\left(d_{0} d_{1}\right)$ if $i \geq 1$.

