Algebraic aspects of number systems

Christiaan van de Woestijne Institut für Mathematik B Technische Universität Graz, Austria

Supported by the FWF, project S9606

Journées de Numération (cítací dni) Prague, 25–30 May 2008

Definitions

We define a pre-number system as a triple (V, ϕ, \mathcal{D}) , where

- V is a finite free \mathbb{Z} -module;
- ϕ is an expanding endomorphism of V;
- \mathcal{D} is a system of representatives of V modulo $\phi(V)$.

A pre-number system (V, ϕ, \mathcal{D}) is a number system if there exist finite expansions

$$a = \sum_{i=0}^{\ell} \phi^i(d_i) \qquad (d_i \in \mathcal{D})$$

for all $a \in V$.

We are ultimately interested in the classification of all number systems.

Examples

- $(\mathbb{Z}, b, \{0, \ldots, |b| 1\})$ is a pre-number system whenever $|b| \ge 2$, and a number system if and only if $b \le -2$.
- $(\mathbb{Z}[i], b, \{0, \ldots, |b|^2 1\})$ is a pre-number system whenever |b| > 1, and a number system if and only if $b = -a \pm i$, for some $a \in \mathbb{N}$.
- (ℤ, −2, {d, D}) is a number system if and only if ... (answer at end of talk)
- $(\mathbb{Z}[X]/((X-5)(X-7)), X, \{1, -1, 3, -3, 5, X, X-2, -X+2, X-4, -X+4, X-6, -X+6, X-8, -X+8, -X+10, 2X-7, 2X-9, -2X+9, 2X-11, -2X+11, 2X-13, -2X+13, -2X+15, 3X-14, 3X-16, -3X+16, -3X+18, 3X-18, -3X+20, 4X-21, 4X-23, -4X+23, -4X+25, 5X-28, -5X+30\})$ is a number system (recall from last year?)

Example: the odd digits

Assume $V = \mathbb{Z}$ and ϕ is multiplication by some integer *b*. Let *b* be odd, $|b| \ge 3$, and let

$$\mathcal{D}_{\text{odd}} := \{-|b|+2, -|b|+4, \dots, -1, 1, \dots, |b|-2, b\}.$$

This is a valid digit set for all odd b.

For b = 3: it's $\{-1, 1, 3\}$. We get $0 = 3 \cdot 1 + (-1) \cdot 3$.

a	$(a)_{3,odd}$	a	$(a)_{3,odd}$	a	$(a)_{3,odd}$	a	$(a)_{3,odd}$
0	13	5	$1\overline{\overline{11}}$	-1	1	-6	1133
1	1	6	13	-2		-7	$\overline{1}1\overline{1}$
2	$1\overline{1}$	7	$1\overline{1}1$	-3	113	-8	$\overline{1}131$
3	3	8	31	-4	11	-9	113
4	11	9	113	-5	$\overline{1}11$	-10	$\overline{1}13\overline{1}$

The dynamic mapping

Define functions

 $d: V \to \mathcal{D}: d(a)$ is the unique $d \in \mathcal{D}$ with $a - d \in \phi(V)$; $T: V \to V: T(a) = \phi^{-1}(a - d(a)).$

We call T the dynamic mapping of (V, ϕ, \mathcal{D}) .

Theorem (V, ϕ, \mathcal{D}) is a number system if and only for all $v \in V$ there exists $n \ge 0$ with $T^n(v) = 0$.

Recall that a pre-number system has a finite attractor $\mathcal{A} \subseteq V$ with the properties

- for all $a \in V$ we have $T^n(a) \in \mathcal{A}$ if n is large enough.
- T is bijective on \mathcal{A} .

Theorem (V, ϕ, \mathcal{D}) is a number system if and only if the attractor contains 0, and consists exactly of one cycle under T.

The easy case

Theorem (Kovács-Germán-vdW) Given (V, ϕ) , let \mathcal{D} be a set of shortest (nonzero) digits modulo ϕ , with respect to a norm $\|\cdot\|$ on V that satisfies $\|\phi^{-1}\| < \frac{1}{2}$. Then (V, ϕ, \mathcal{D}) is a number system.

Such a norm exists when $|\alpha| > 2$ for all eigenvalues α of ϕ .

Theorem (Curry, others?) Let $n \ge 1$, let ϕ be an endomorphism of \mathbb{Z}^n , and let

$$\mathcal{D} = \phi\left(\left[-\frac{1}{2}, \frac{1}{2}\right)^n\right) \cap \mathbb{Z}^n.$$

If we have $|\alpha| > 2$ for all singular values of ϕ , then $(\mathbb{Z}^n, \phi, \mathcal{D})$ is a number system.

Algebra

A finite free \mathbb{Z} -module V with endomorphism ϕ is automatically a module over the ring $\mathbb{Z}[\phi] \subseteq \operatorname{End}_{\mathbb{Z}}(V)$. We have

 $\mathbb{Z}[\phi] \cong \mathbb{Z}[X]/(f_{\mathsf{min}}(\phi)).$

If dim $V = \dim \mathbb{Z}[\phi] = \deg(f_{\min}(\phi))$, then V is isomorphic, as a $\mathbb{Z}[\phi]$ -module, to an ideal of $\mathbb{Z}[\phi]$.

Theorem (Jordan-Zassenhaus) If $f \in \mathbb{Z}[X]$ is squarefree, then the number of isomorphism classes of ideals of $\mathbb{Z}[X]/(f)$ is finite.

It is important to consider also the classes of **noninvertible ideals**!

Algebra (2)

Example: let $R = \mathbb{Z}[\sqrt{5}]$. The maximal order $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ is isomorphic to the non-principal ideal $I_2 = (2, 1 + \sqrt{5})$ of R! Ugly: $N(I_2) = 2$, but $N(I_2^2) = 8!!$

The matrix of multiplication by $\sqrt{5}$ on I_2 is $M = \begin{bmatrix} -1 & 2 \\ 2 & 1 \end{bmatrix}$. It follows that this matrix is not similar over \mathbb{Z} to the companion matrix of $X^2 - 5$, although it has the same characteristic polynomial.

The singular values of M also equal to $\pm\sqrt{5}$, so by Curry's theorem, a valid digit set for basis M on \mathbb{Z}^2 is given by $\left(M\left[-\frac{1}{2},\frac{1}{2}\right)^2\right) \cap \mathbb{Z}^2 = \{(\pm 1,0), (0,\pm 1), (0,0)\}.$

It follows that $\{0, 2, -2, 1 + \sqrt{5}, -1 - \sqrt{5}\}$ is a valid digit set for basis $\sqrt{5}$ on I_2 . The same digits divided by 2 form a valid digit set for $\sqrt{5}$ on the maximal order.

Algebra (3)

If dim $\mathbb{Z}[\phi] < \dim V$, then things become complicated. Sometimes, we have a direct sum decomposition:

- if ϕ is the identity, then $\mathbb{Z}[\phi] \cong \mathbb{Z}$, and we have $V \cong \mathbb{Z}^n$ as a \mathbb{Z} -module.
- if V is the integral quaternions $\mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}k$ and ϕ is (left) multiplication by i, then $V \cong \mathbb{Z}[i] \oplus \mathbb{Z}[i]j$.

However, V may be indecomposable as a $\mathbb{Z}[\phi]$ -module.

Theorem (Heller-Reiner-Dade) If p is a prime and $f = X^{p^i} - 1$, with $i \ge 3$, then there exist infinitely many isomorphism classes of indecomposable modules over the ring $\mathbb{Z}[X]/(f)$.

Tiles and translation

The tile of the pre-number system (V, ϕ, \mathcal{D}) is

$$\mathcal{T} = \left\{ \sum_{i=1}^{\infty} \phi^{-i}(d_i) : d_i \in \mathcal{D} \right\}$$

The set \mathcal{T} covers $V \otimes \mathbb{R}$, with tiling lattice Λ , which is the $\mathbb{Z}[\phi]$ -submodule of V generated by $\mathcal{D} - \mathcal{D}$, the differences of the digits. Translation of the digit set just induces a translation of \mathcal{T} ; the attractor \mathcal{A} is contained in $-\mathcal{T}$. This provides an easy proof of

Theorem. Given a pre-number system (V, ϕ, D) , for each $t \in V$, let $\mathcal{D}_t = \{d + t : d \in D\}$. Then there are only finitely many $t \in V$ such that (V, ϕ, D_t) is a number system.

Another method shows that we can leave $0 \in \mathcal{D}$ in place, and obtain the same conclusion.

n-fold pre-number systems

Let (V, ϕ, \mathcal{D}) be a pre-number system with attractor \mathcal{A} . For every positive integer n, define

$$\mathcal{D}^n = \left\{ \sum_{i=0}^{n-1} \phi^i(d_i) : d_i \in \mathcal{D} \right\},\$$

the set of all length-n expansions on base ϕ with digits in \mathcal{D} . Then $(V, \phi^n, \mathcal{D}^n)$ is again a pre-number system, called the *n*-fold prenumber system of (V, ϕ, \mathcal{D}) , and we have

- \mathcal{A}^n , the attractor of $(V, \phi^n, \mathcal{D}^n)$, is equal to \mathcal{A} .
- $(V, \phi^n, \mathcal{D}^n)$ is a number system if and only if (V, ϕ, \mathcal{D}) is a number system, and $gcd(n, |\mathcal{A}|) = 1$.

This theorem is very useful for the computation of attractors, since the bounds on the size of \mathcal{A} derived from \mathcal{D}^n are often smaller than those derived from \mathcal{D} .

n-fold pre-number systems (2)

Theorem (folklore) Let $\|\cdot\|$ be a norm on $V\otimes\mathbb{R}$, and let

$$S = \left\{ v \in V : \|v\| \le \max_{d \in \mathcal{D}} \|d\| \frac{\|\phi^{-1}\|}{1 - \|\phi^{-1}\|} \right\};$$

then the attractor of (V, ϕ, \mathcal{D}) is contained in S.

Example: let $V = \mathbb{Z}[i]$, with the complex norm $\|\cdot\|$, and let ϕ be multiplication by b = -1 + i. We let $\mathcal{D} = \{0, 1, 2, 3\}$, and compute

$$L_n = \frac{\max_{d \in \mathcal{D}^n} \|d\|}{\|b\|^n - 1}$$

for n = 1, 2, ...:

			3					
L_n	7.24	4.24	3.67	3.61	3.28	3.46	3.32	3.22

Of course, the computation of L_n takes exponential time in n.

n-fold pre-number systems (3)

Assume $V = \mathbb{Z}$.

Theorem (Matula 1982) Let $k \leq d \leq K$ for all $d \in D$, and let $a \in A$. Then

$$\begin{cases} \frac{-K}{b-1} &\leq a \leq \frac{-k}{b-1} & \text{ if } b > 0; \\ \frac{-kb-K}{b^2-1} \leq a \leq \frac{-Kb-k}{b^2-1} & \text{ if } b < 0. \end{cases}$$

One should compare these bounds with the generic $|a| \leq \frac{\max |d|}{|b|-1}$.

The proof uses the twofold number system, in case b < 0, to reduce to the case b > 0.

Infinitely many digit sets in $\ensuremath{\mathbb{Z}}$

Question: can one shift just one digit to obtain other good digit sets?

Answer: under all kinds of technical assumptions, Yes.

Theorem (A generalisation of Matula 1982 and Kovács and Pethő 1983) Let $(\mathbb{Z}, b, \mathcal{D})$ be a number system, where $B = |b| \ge 3$ and where $|d| \le B$ for all $d \in \mathcal{D}$. Fix some $d \in \mathcal{D}$ and some integer uwith $|u| \le B - 1$; if $0 \notin \mathcal{D}$, assume $|u| \le B - 2$. Let \mathcal{B} be the set of digits in \mathcal{D} that occur in the expansions of 0, u + 1, u, and u - 1. If $d \notin \mathcal{B}$, then we may replace d in \mathcal{D} by $\tilde{d} = d - ub^k$, for any $k \ge 1$, without affecting the number system property.

Note that $|\mathcal{B}| \leq 6$ if b > 0 and $|\mathcal{B}| \leq 8$ if b < 0. For |b| = 3, the Theorem does not work.

Examples of infinite families

We write B = |b|. For B = 3 (Matula): $\{0, 1, 2 - 3^k\}$ when b = 3, and $\{0, 1, 2 - 9^k\}$ when b = -3. Can take $\tilde{d} = d - ub^k$, for $d \notin \mathcal{B}$.

b	${\cal D}$	u	$ \mathcal{B} $
<u>≥ 4</u>	$\{-1, 0, 1, \dots, b-2\}$	1	$\{0, 1, 2\}$
		-1	$\{-1, 0, b-2\}$
≤ -4	$\{0,1,\ldots,B-1\}$	1	$\{0, 1, 2\}$
		-1	$\{0, 1, B - 2, B - 1\}$
	$\{1,2,\ldots,B\}$	1	$\{1, 2, B\}$
		-1	$\{1, B - 2, B - 1, B\}$
	$\{-B, 1, 2, \dots, B-1\}$	1	$\{1, 2, B - 1, -B\}$
\geq 5 odd	odd digits	1	$\{-1, 1, -b + 2, b\}$
		-1	$\{-1,b-2,b\}$
≤ -5 odd	odd digits	1	$\{-1, 1, b + 2, b\}$
		-3	$\{1, -1, -3, B-4, B-2\}$

The proof

Let $\tilde{\mathcal{A}}$ be the attractor for base b and digit set $\tilde{\mathcal{D}}$, which is \mathcal{D} with d replaced by \tilde{d} .

Lemma If $\tilde{d} = d - ub^k$, then the expansions of all $a \in \tilde{\mathcal{A}}$ on \mathcal{D} have length bounded by k + 2 or so.

Now we construct a finite state transducer that replaces all occurrences of d by \tilde{d} , and keeps the length under k + 2 or so.

Lemma If $d \notin \mathcal{B}$, then the finite state transducer always terminates on a word containing only \tilde{d} and no d.

Base -2

In the figure, we see all valid digit sets for b = -2with both digits less than 200 in absolute value. What is the structure of this set?

Base -2

Theorem Let $d, D \in \mathbb{Z}$, with d < D. Then $(\mathbb{Z}, -2, \{d, D\})$ is a number system if and only if

- 1. one of $\{d, D\}$ is even and one is odd;
- 2. neither of d and D is divisible by 3, except when the even digit is 0;
- 3. we have $2d \leq D$ and $2D \geq d$;

4.
$$D-d = 3^i$$
 for some $i \ge 0$.

Example Thus, $\{1, 3^k + 1\}$ is valid for b = -2, for all $k \ge 0$.

The only valid digit sets for b = -2 that have 0 are $\{0, 1\}$ and $\{0, -1\}$.

The proof (1)

It is clearly necessary that we have one even and one odd digit. Also, each digit d divisible by 3 induces a 1-cycle d/3, so this is only admissible for d = 0.

Lemma When |b| = 2, the attractor \mathcal{A} is an interval.

Lemma Let d < D be digits for b = -2. Then

$$\mathcal{A} = \left\{ \left\lceil \frac{2d - D}{3} \right\rceil, \dots, \left\lfloor \frac{2D - d}{3} \right\rfloor \right\}.$$

In other words, Matula's bounds are sharp for b = -2.

Lemma We have $0 \in \mathcal{A}$ if and only if $2d \leq D$ and $2D \geq d$.

The proof (2)

It remains to determine the cycle structure of \mathcal{A} . Let $\mathcal{D} = \{d_0, d_1\}$, and let $\delta = d_0 - d_1$. If *a* starts a cycle of length ℓ , then

$$(1 - b^{\ell})a = \sum_{i=0}^{\ell-1} d_i b^i = d_0 \frac{b^{\ell} - 1}{b - 1} - \delta \sum_{i=0}^{\ell-1} \varepsilon_i b^i,$$

for some $\varepsilon \in \{0, 1\}$. With b = -2, we find

$$3\delta$$
 divides $(d_0 - 3a)((-2)^{\ell} - 1)$.

Because \mathcal{A} is an interval of length $|\delta|$, except in some small cases we can assume that $gcd(3\delta, d_0 - 3a) = 1!$ Now we do some number theory to obtain

Lemma There is exactly one cycle in \mathcal{A} if and only if $|\delta| = 3^i$ for some $i \ge 0$, and $3 \nmid (d_0 d_1)$ if $i \ge 1$.